A new characterization of simple K_3-groups using same-order type

Uma nova caracterização de k_3-grupos simples usando o mesmo tipo de ordem

Igor dos Santos Lima1,2, Josyane dos Santos Pereira1,2

1University of Brasília, Brasília, DF, Brazil

ABSTRACT

Let G be a group, define an equivalence relation \sim as below:

$$\forall g, h \in G, g \sim h \iff |g| = |h|$$

the set of sizes of equivalence classes with respect to this relation is called the same-order type of G and denoted by $\alpha(G)$. And G is said a α_n-group if $|\alpha(G)| = n$. Let $\pi(G)$ be the set of prime divisors of the order of G. A simple group of G is called a simple K_n-group if $|\pi(G)| = n$. We give a new characterization of simple K_3-groups using same-order type. Indeed we prove that a nonabelian simple group G has same-order type $\{r, m, n, k, l\}$ if and only if $G \cong PSL(2,q)$, with $q = 7, 8$ or 9. This result generalizes the main results in (4), (6) and (8). Moreover based on the main result in (8) we have the natural question: Let S be a nonabelian simple α_n-group and G a α_n-group such that $|S| = |G|$. Then $S \cong G$. In this paper with a counterexample we give a negative answer to this question.

Keywords: Element order; Same-order type; Characterization; Simple group; K_n-group simple

RESUMO

Seja G um grupo, definimos como uma relação de equivalência \sim:

$$\forall g, h \in G, g \sim h \iff |g| = |h|$$

O tamanho do conjunto de classes de equivalência dado por essa relação é chamado de mesmo tipo de ordem de G e denotado por $\alpha(G)$. G é chamado de um α_n-grupo se $|\alpha(G)| = n$. Seja $\pi(G)$ o conjunto dos divisores primos da ordem de G. Um grupo simples de ordem G é chamado de K_n- grupos simples se $|\pi(G)| = n$. Caracterizamos esses K_3- grupos simples usando outros de mesma ordem. Na verdade nós provamos que um grupo não abeliano G tem o mesmo tipo de ordem $\{r, m, n, k, l\}$, se e somente se, G
A new characterization of simple K_3-groups using same-order type

$\cong PSL(2,q)$, com $q = 7, 8$ ou 9. Este é um resultado generalizado e os principais resultados em (4), (6) e (8). Além disso, com base no resultado principal em (8) nós temos uma questionamento natural: Seja S um grupo simples não abeliano α_n-grupo e G a α_n-grupo de tal modo que $|S| = |G|$. Então $S \cong G$. Neste artigo, com um contra-exemplo, damos uma resposta negativa a essa pergunta.

Palavras-chave: Ordem dos elementos; Mesmo tipo de ordem; Caracterização; Grupo simples; K_n-grupos simples

1 INTRODUCTION

In this paper all the groups we consider are finite.

Let G a group and $\pi(G)$ be the set of element orders of G. Let $t \in \pi(G)$ and s_t be the number of elements of order t in G. Let $nse(G) = \{s_t | t \in \pi(G)\}$ the set of sizes of elements with the same order in G. Some authors have studied the influence of $nse(G)$ on the structure of G (see (1), (5), (8) and (9)). For instance R. Shen in (6) proved that $A_4 \cong PSL(2, 3), A_5 \cong PSL(2, 4) \cong PSL(2, 5)$ and $A_6 \cong PSL(2, 9)$ are uniquely determined by $nse(G)$. As a continuation in (4) was proved that if G is a group such that $nse(G) = nse(PSL(2, q))$, where $q \in \{7, 8, 11, 13\}$, then $G \cong PSL(2, q)$. In (7) and (8) new characterizations of A_5 were given using $nse(A_5)$. The authors in (7) proved that A_5 is the only group such that $nse(A_5) = \{1, 15, 20, 24\}$ and the authors in (8) generalized that a nonabelian simple group G has same-order type $\{r, m, n, k\}$ if and only if $G \cong A_5$ (see Th. 1.1 (8)).

Let G be a group, in (8) was defined an equivalence relation \sim as below:

$$\forall g, h \in G, g \sim h \iff |g| = |h|$$

the set of sizes of equivalence classes with respect to this relation is called the same-order type of G and denoted by $\alpha(G)$. And G is said a α_n-group if $|\alpha(G)| = n$. Note that $\alpha(G)$ is equal to the set of sizes of elements with the same order in G, hence $|nse(G)| = |\alpha(G)|$.

We give a new characterization of $PSL(2,7)$, $PSL(2,8)$ and $PSL(2,9)$ using same-order type.

THEOREM 1.1. Let G be a simple K_3-group with same-order type $\{r, m, n, k, l\}$. Then $G \cong PSL(2,7), PSL(2,8)$ or $PSL(2,9)$.

This result generalizes the main results in (4), (6) and (8). Combination the main
results in (4) and (6) with Theorem 1.1 we have the following result

COROLLARY 1.2. A simple K_3-group G has same-order type \{r, m, n, k, l\} if and only if $G \cong \text{PSL}(2,7)$, \text{PSL}(2,8) or \text{PSL}(2,9)$.

We see easily that the only α_1-groups are 1 and a cyclic group of order 2. In (6) R. Shen characterized α_2-group as nilpotent groups and α_3-group as solvable groups. Moreover Taghvasani-Zarrin (see Th. 1.1 in (8)) showed that the only nonabelian simple α_4-group is the A_5. As noted in (4) and (8) finite groups G cannot be determined by $nse(G)$. Indeed in 1987 Thompson gave a first example as follows: Let $G_1 = (C_2 \times C_2 \times C_2 \times C_2) \rtimes A_7$ and $G_2 = \text{PSL}(3,4) \rtimes C_2$ be the maximal subgroups of Mathieu group M_{23}.

Then $nse(G_1) = nse(G_2)$, but $G_1 \not\cong G_2$.

Motivated by the main result in (8) about a new characterization of A_5 using same-order type, we have the natural question.

QUESTION 1.3. Let S be a nonabelian simple α_n-group and G a α_n-group such that $|S| = |G|$. Then $S \cong G$.

We give a negative answer to this question in the last section.

2 PROOF OF THEOREM 1.1

We need of one preliminary result to prove the main Theorem. The following result is a property very interesting of simple groups (see Lemma 2.7 in (8)).

LEMMA 2.1. Let G be a nonabelian simple group. Then there exist two odd prime divisors p and q of the order of G such that $s_p = s_q$.

In fact if G is a nonabelian simple group then there exist two odd prime divisors p and q of the order of G such that \{1, s_p, s_q\} $\subseteq \alpha(G)$ (see Corollary 2.8 in (8)).

We are now ready to conclude the proof of main Theorem.

Proof of Theorem 1.1: As G is a nonabelian simple group, it follows that $s_2 > 1$, w.l.g. $r = 1$ and $s_2 = m$. From Lemma there exist odd prime divisors p and q of the order of G such that $n = s_p \neq s_q = k$, hence $\pi(G) = \{2, p, q\}$ because G is a simple K_3-group. Therefore \{1, s_2, s_p, s_q\} $\subseteq \alpha(G) = \{r, m, n, k, l\}$. So there exist a divisor $t \notin \pi(G)$ of order of G
such that \(s_t = l \). It’s well known that the only nonabelian simple groups of order divisible by exactly three primes are the following eight groups: \(\text{PSL}(2,q) \), where \(q \in \{5, 7, 8, 9, 17\} \), \(\text{PSL}(3,3) \), \(\text{PSU}(3,3) \) and \(\text{PSU}(4,2) \), see Th. 1 and Th. 2 in (3). Now we arguing as in the proof of Th. 1.1 in (8) and a GAP check yields that \(|\alpha(\text{PSL}(2,7))| = 5 \), \(|\alpha(\text{PSL}(2,8))| = 5 \), \(|\alpha(\text{PSL}(2,9))| = 5 \) and all others groups are \(\alpha_5 \)-group with \(n \geq 6 \) (except \(A_5 \) since \(|\alpha(A_5)| = 4 \)). The result is follows.

3 A COUNTEREXAMPLE TO A QUESTION 1.3

Now we give a counterexample to the Question 1.3. Firstly we observed that by the main Theorem in (6), we have that \(\alpha(\text{PSL}(2,7)) \) is uniquely determined and we have that \(\alpha(\text{PSL}(2,7)) = \{1,21,56,42,48\} \) hence \(\text{PSL}(2,7) \) is a \(\alpha_5 \)-group. Let \(G = Q_8 \times (C_7 \rtimes C_3) \), where \(Q_8 \) is the quaternion group of order 8. As \(|G| = 168 \) and \(G \) is a soluble group then is sufficient to prove that \(|\alpha(G)| = 5 \). Indeed the only 2-Sylow subgroup \(Q_8 \) is a normal subgroup of \(G \) and using Sylow’s Theorem it follows that \(s_2 = 8 \). Note that a 7-Sylow subgroup of \(G \) is isomorphic to \(C_7 \), and is a normal subgroup of \(Q_8 \cdot C_7 \) and \(C_7 \rtimes C_3 \), hence the normalizer \(N \) of \(C_7 \) has same order of \(G \). Again from Sylow’s Theorem we have that \(C_7 \) is a normal subgroup of \(G \) and \(s_7 = 56 \).

As the number of 3-Sylow subgroup of \(G \) is 7, then \(s_3 = 14 \). The number of elements of \(G \) of order 2, 4 are respectively 1 and 6, hence \(s_2 = 1 \), \(s_4 = 6 \) and consequently \(s_6 = 14 \), \(s_{12} = 84 \), \(s_{14} = 6 \) and \(s_{28} = 36 \) (because of direct product in the structure of \(G \)). Therefore \(\alpha(G) = \{1,1,14,6,14,6,84,6,36\} \) and \(G \) is a \(\alpha_5 \)-group. Clearly \(|\text{PSL}(2,7)| = 168 = |G| \) but \(\text{PSL}(2,7) \not\cong G \).

We can obtain others groups \(G \) with the computational group theory system GAP (2): \(G = C_7 \times (Q_8 \rtimes C_3) \) or \(G = C_2 \times ((C_{14} \times C_2) \rtimes C_3) \). These groups are also counterexamples to the Question 1.3.
4 CONCLUSION

We give the new characterization of some simple groups using the same-order type. Also, we give a negative answer for a natural question. Our main result generalizes some known results. There is a natural interest in this theme. This result depends on classification of finite simple groups (CFSG).

ACKNOWLEDGMENTS

We thank L. J. Taghvasani for pointing out a mistake of ours and talking to us about Question 1.3 in the olderst version of (8) and too thank Leonardo da Cruz by suggestions in the new version.

The first author was partially supported by DPI/UnB, FAPDF, Brazil. The second author was partially supported by CNPq, Brazil.

REFERENCES

Authorship contributions

Igor dos Santos Lima

Doctor in Mathematics
https://orcid.org/0000-0002-0346-2716 • igor.matematico@gmail.com
Contribution: ideas and writing

Josyane dos Santos Pereira

Degree in Mathematics
https://orcid.org/0000-0003-4294-8871 • josyanedsp@gmail.com
Contribution: ideas and writing

How to quote this article