Logotipo

Descrição gerada automaticamente

Desenho de personagem de desenhos animados com texto preto sobre fundo branco

Descrição gerada automaticamente com confiança média

 

Universidade Federal de Santa Maria

Ci. e Nat., Santa Maria, v. 44, e26, 2022

DOI: 10.5902/2179460X67670

ISSN 2179-460X

Submitted: 14/09/2021 • Approved: 29/09/2021 • Published: 14/06/2022


1 INTRODUCTION.. 3

2 METHODOLOGY. 5

3 ANALYSIS OF RESULTS. 6

4 CONCLUSION.. 15

REFERENCES. 16

 

Environment

Chemical Residues in Rice Culture: A Bibliographic Review

Resíduos Químicos na Cultura do Arroz: Uma Revisão Bibliográfica

Frederico Fonseca da SilvaIÍcone

Descrição gerada automaticamente

Wilson Sacchi PeternellalIÍcone

Descrição gerada automaticamente

I Instituto Federal do Paraná, Curitiba, PR, Brazil

ll Universidade Federal de Rondônia, Porto Velho, RO, Brazil

ABSTRACT

Rice is the most cultivated cereal in the world and the main component of human food. Due to the particularity that this crop develops in rainfed areas, irrigated and, mainly, flooded, associated with intense agricultural activity. The final product becomes a potential vehicle, directly or indirectly, of innumerable diseases caused by pesticides used during the phase vegetative; absorption of various cations that, in excess, cause disturbances in man and, percolation in the soil carrying elements or chemical compounds that will contaminate rivers, springs and groundwater. In addition to receiving significant amounts of post-harvest pesticides in search of better storage and conservation. Given the above, the objective of this work is to search the literature for reports of contamination of rice in human food, indicating the need for greater control of the product in the final stage of the production chain, that is, in the stages of culture, harvesting, storage and marketing. Therefore, a way to reduce the possibility of causing diseases to humans due to the load of pesticides applied during their production.

Keywords: Contamination; Agrotoxics; Side-effects; Pesticides

RESUMO

O arroz é o cereal mais cultivado no mundo e o principal componente da alimentação humana. Pela particularidade de que essa cultura se desenvolve em áreas de sequeiro, irrigada e, principalmente, inundada, associada à intensa atividade agrícola. O produto final passa a ser veículo em potencial, direta ou indiretamente, de inúmeras doenças causadas por agrotóxicos utilizados durante a fase vegetativa; absorção de vários cátions que, em excesso, causam distúrbios no homem e, percolação no solo carreando elementos ou compostos químicos que irão contaminar rios, mananciais e águas subterrâneas. Além de receber significativas quantidades ainda de pesticidas pós-colheita na busca de melhor armazenamento e conservação. Diante do exposto, o objetivo deste trabalho é buscar na literatura relatos de contaminação do arroz na alimentação humana, indicando a necessidade de maior controle do produto no estágio final da cadeia produtiva, ou seja, nas etapas de cultivo, colheita, estocagem e comercialização. Portanto uma forma de reduzir à possibilidade de provocar doenças ao ser humano em função da carga de agrotóxicos aplicada durante sua produção.

Palavras-chave: Contaminação; Agrotóxicos; Efeitos secundários; Pesticidas

1 INTRODUCTION

As a result of technological development and world demographic growth, especially in recent decades, industrial and agricultural activities have intensified,  well as mineral extraction and urbanization, which have caused a considerable increase in the levels of contamination in the environment, especially in relation to soil - water, from a productive perspective.

Rice is the most produced cereal in the world and belongs to the Oryza genus (SOUZA, 2012), which has about 20 known species worldwide (FIORAVANTI, 2016). In the world scenario, it is characterized as the third largest grain crop (WALTER, 2014).

Among other species, Oryza sativa L, which belongs to the vast majority of rice varieties commercially cultivated in the world, according to Lourenço (2009), originated in southwest Asia. It is a plant belonging to the grass family and is responsible for feeding half of the human population.

In Brazil, according to data from a survey by the National Supply Company (CONAB, 2020), the area planted with rice in the 2020/2021 harvest reached 1.7 million hectares, whose expected production, added upland to irrigated rice, should remain at 11 million tons.

Looking at the species, the three most important subspecies, according to Weber (2012), are: (i) the indica, with long and fine grains, cultivated in warmer regions, such as southwestern Asia itself and tropical regions of America and from Africa; (ii) japonica, with short, rounded grains, the best adapted to colder regions, such as Korea, Japan and northern China; and, (iii) javanica, with long and thick grains.

As described by Yoshida (1981), and corroborated by Santiago et al. (2013), the rice plant can take 3 to 6 months from planting to maturity, depending on the variety and environment. However, most varieties have a cycle of 110 to 150 days. And that, regardless of the subspecies, as verified by Zilio (2009), rice is present in the daily menu of Brazilian workers in an average amount of 350 grams at each meal.

Cereal husks represent approximately 20% of the dry mass of the harvest, being an abundant lignocellulosic residue. The husk covers and protects the grain during its growth, and consists of layers, which comprise the outer epidermis, coated with a thick cuticle layer of highly silicified cells (SOUZA, 2018). Another relevant point of the residue is the superior calorific value (PCS) equal to 0.89 Mtoe, where the unit is represented in mega ton of oil equivalent (HORST, 2013). The chemical composition of the rice husk can be seen in Table 1.

Table 1 Chemical composition of lignocellulosic biomass for rice crops

Residue

Chemical composition of rice husks in (%)

Celulose

hemicellulose

lignin

extractives

Gray

protein

Total

Casca de arroz

34,0

13,0

29,0

3,0

17,0

2,0

98,0

 Source: Hickert (2010)

Thus, the objective of this study was to search the scientific literature for reports of contamination by chemical elements or compounds, using rice as a vehicle, when used in human food.

2 METHODOLOGY

For the classification of this study, according to the taxonomy proposed by Gil (2017) and Vergara (2003), there are two categories for the methodology: regarding the ends and regarding the means. Thus, as to the ends, the research is descriptive; and, as for the means, it is a bibliographic and documental research.

Thus, the present work consisted of an intense bibliographical survey, approaching rice as an essential food for the population all over the world and as a vehicle for contamination of chemical elements or compounds (organic and/or inorganic) resulting from agricultural management, cultural treatments and post-harvest treatments that the crop is subjected to, directly or indirectly affecting the human being.

As a database, the consultation of works published in various scientific journals and/or available on the internet (SILVEIRA et al. 2011) was used, relating the issue of pesticide application in the rice production chain, according to Lacerda et al. (2012).

The established criteria can be the same used in Treinta's (2011) research, where the articles were evaluated for relevance in relation to four main axes: articles, authors, journals and theme.

Finally, according to Treinta et al. (2013), it should be remembered that the bibliographic research process must be continuous and dynamic, where researchers must always be aware of new possibilities and natural evolutions of science. So the bibliographic search will be very consistent.

3 ANALYSIS OF RESULTS

The results obtained allowed the prioritization of the researcher's reading to be carried out with a guarantee that the articles were firstly aligned with the theme and that they met the quality criteria presented by the academic society. Thus, they are listed in four themes: (3.1) Contaminants via soil / pesticides; (3.2) Contamination by chemical elements; (3.3) Characteristics of the rice crop; and, (3.4) Agrochemicals in rice culture.

3.1 Contaminants via soil / pesticides

Contamination comes from anthropogenic activity or from accumulation resulting from biogeochemical processes occurring in nature (SANTANA, 2017).

The amount of agrochemicals that reach water resources varies significantly between regions and depends on the dosage, the chemical characteristics of the product and the environmental conditions during application (HUBER et al. 2000; RIBEIRO et al. 2007; OLIVEIRA, 2019).

Polluted soil (ACCIOLY and SIQUEIRA, 2000; MOREIRA and SIQUEIRA, 2006), is that which contains concentrations of a certain contaminant that affect the biotic components of the ecosystem, compromising the functionality and sustainability of the entire environment considered.

Agricultural pesticides, such as pesticides, are generally applied in large quantities, over large areas, characterized by their persistence in the environment, generating serious problems in the quality of surface and groundwater (BAIRD and CANN, 2011), in addition to resulting in the toxicity of many non-target species (CARR and CHAMBERS, 1996; MACHADO, 2016). Any commonly used pesticide falls into two main groups: organophosphate compounds and organochlorine compounds (SANTOS et al. 2007).

Currently, according to Maluf and Flexor (2017), it is estimated that approximately 85% of synthetic pesticides used in the world are destined for the agricultural sector. As presented by INCA (2019), the assessment of the degree of soil contamination by pesticides, that is, agrochemicals, chemical pesticides, agricultural pesticides or pesticides, is of high relevance, due to the transfer of these contaminants to food, via absorption by the roots or aerial system.

As presented by Carvalho (2000), he states that the most persistent compounds, such as organochlorine insecticides, are deposited in soils as well as in water, and their residues progressively accumulate in food chains. However, according to Vinhal and Soares (2018), organophosphate compounds are responsible for most cases of poisoning in the population.

Also considering organophosphates, Babu et al. (2003) and Royte (2021), state that chemical pesticides belonging to this group were and still continue to be, also, widely used in agricultural production. Its residues can remain present in the soil and can accumulate in vegetables, especially cereals and many of those used for human consumption, including rice, potentially causing health problems for consumers.

According to D'Amato et al. (2002), samples of the pesticides DDT and HCH (their isomers and metabolites) were analyzed in soil samples and in different parts of rice. As described by Babu et al. (2003) concluded that all four isomers were present, including in rice grains.

According to Dimond and Owen (1996), the DDT used in the USA, in the 50s of the 20th century, to control forest pests, is still detected in quantities of 1.6 mg.kg-1 of soil in the 1 to 6 cm layer.

Thus, its high persistence can be observed, since certain xenobiotics have been constituted for continued detection in the environment and for the existence of areas contaminated with these compounds or metabolites and their degradation (COSTA et al. 2008).

Depending on the application rate and biodegradation, the accumulation of pesticides in the soil can reach, under certain circumstances, 500 kg.ha-1 (PISQ, 2008).

3.2 Contamination by chemical elements

According to Nellessen and Fletcher (1993), Oliveira (2008) and Schmidt et al. (2009), among others, the heavy metals commonly associated with toxicity or pollution are As (Arsenic), Cd (Cadmium), Co (Cobalt), Cr (Chrome), Cu (Copper), Pb (Lead), Hg ( Mercury), Mo (Molybdenum), Ni (Nickel), Se (Selenium) and Zn (Zinc), where it can be observed that Mo, Cu, Zn and Se are micronutrients and are commonly added during the development stage of the culture and it can be present in substances such as organometallics, which make up the structure of various agrochemicals.

Once released into the soil solution, according to Lima (2013), metals can be leached underground, reaching the water table, with serious consequences for humans (either by drinking, or by consuming contaminated fish or this water is still used for irrigation purposes). Another route of these metals can also cause toxicity to plants, either through the absorption process or mass flow of soil organisms or being adsorbed on clays and complexed to organic matter, representing a potential polluting source (CHARLESWORTH et al. 2003; LOPES et al. 2006; SILVA et al. 2007).

Specifically regarding the contamination of rice production water via fish, Copatti et al. (2009), demonstrate that pesticides leave residues in the water used for rice culture, which can even come into contact with several nearby water systems, affecting aquatic life, especially fish, as they act as organisms at the top of the food chain, as they are supplied by an intricate lower trophic network of various animal or plant organisms that serve as food subsidies. In addition, fish (as well as other aquatic life beings) serve as food for human populations, and may serve as an indirect route to such contaminants.

Vargas (2010) defines trace elements as those chemical elements that occur in natural systems and are disturbed by the unfriendly presence of human beings, that is, an anthropic process, even in small quantities and which, when present in sufficient concentrations, is oxidized or from their ionic speciation, are toxic to living human, animal and plant organisms.

As described by Yaron et al. (1996) and Silva et al. (2006), one of the main sources of pollution and contamination by trace elements, via soil, comes from the use of animal waste, whether in solid or liquid states, in addition to disposal, that is, application of raw effluent in cultivated areas.

For a deeper understanding of the relationships and interactions of these trace elements, the Table of the effects of trace elements on plant and animal nutrition is transcribed Table 2.

Table 2 – Effects of trace elements on plant and animal nutrition

Element

Essential or beneficial to

potentially toxic to

Comments

Plants

Animals

Plants

Animals

Ag

No

No

 

Yes

Interaction with Cu and Se

As

No

Yes

Yes

Yes

Phytotoxic before animal toxicity. May be carcinogenic

B

Yes

No

Yes

-

Narrow margin, especially on plants

Ba

No

Possible

-

-

Insoluble; relatively non-toxic.

Be

No

No

Yes

Yes

Carcinogenic

Bi

No

No

Yes

Yes

Relatively non-toxic

Cd

No

No

Yes

Yes

Narrow margin. Adds to the food chain. Carcinogenic. Itai-itai disease

Co

Yes

Yes

Yes

Yes

Relatively non-toxic. Carcinogenic

Cr

No

Yes

Yes

-

Very toxic. Carcinogenic

Cu

Yes

Yes

Yes

-

Easily complexed in soil. Narrow margin for plants

F

No

Yes

Yes

-

Accumulatively toxic to plants and animals

Hg

No

No

 

Yes

Water accumulation. Minamate disease

Mn

Yes

Yes

<pH 5

-

Wide margin. Toxic in acidic soils

Mo

Yes

Yes

-

5-20 ppm

Highly enriched in plants

Ni

No

Yes

Yes

Yes

Very mobile in plants. Carcinogenic

Pb

No

No

yes

yes

Aerial dispersion and deposited on the surface. poisonously cumulative

Sb

No

No

-

Yes

Insoluble. Relatively non-toxic

Sc

Yes

Yes

Yes

4 ppm

Interacts with other metallic trace elements

Sn

No

Yes

-

Yes

Relatively non-toxic

Ti

No

Possible

-

-

Insoluble. Probably carcinogenic

Tl

No

No

-

Yes

Very mobile in plants

V

Yes

Yes

Yes

Yes

Highly toxic to animals. Carcinogenic

W

No

No

-

-

Very mobile in plants

Zn

Yes

Yes

-

-

Easily complexed in soils. Relatively non-toxic

Source: Adriano (1986)

The phytoavailability of nutrients and other potentially toxic elements, as described by Berton (2002) and Villanueva et al. (2012), mainly from soils that receive urban-industrial waste, that is, composed of garbage and sewage, as well as hydroponic solutions, agricultural soil substrates and ecosystems in general, has been shown to be highly correlated with chemical species of the elements present in solution, according to their ionic speciation for certain pH values.

The US Environmental Protection Agency (EPA-US, 2020) considers the metal content that causes a 50% reduction in plant growth to be toxic, while in Switzerland only 25% is considered to have a drop in growth (CUNHA et al. 2008).

An important ecological modification is introduced when rice is cultivated in flooded soils where, according to Evald (2016), it needs ethanol in the process to create an oxidative zone, obtained by cell elongation, to develop the air parenchyma, aiming for respiration or oxygen demand in the root system. The essential chemical element both for this cell elongation as well as for the growth hormone synthesis, activator of the AIA enzyme, that is, the idoleacetic acid, which is very sensitive to the oxidation process, is zinc (CLARKSON and HANSON, 1980; CASTRO et al. 2012).

3.3 Characteristics of the rice crop

In addition to climatic variables caused by latitude or altitude, rice is now cultivated all over the world. It is cultivated in Slovakia at 50ºN, in Uruguay at 35ºS, in Kerala, India, at sea level and in Nepal, at more than 2000 m altitude (FAO, 2021; EMBRAPA, 2016).

However, about 90% of all rice produced in the world is located in Asia and of this, the vast majority is cultivated under flooded areas, naturally or artificially, according to Prochnow (2002, causing a continuous flow of percolation of water, nutrients and pesticides to deeper layers of soil beyond the water table. When analyzing only the nitrate parameter, it appears that high concentrations of this compound in water from irrigated rice fields and used for drinking can cause methemoglobinemia, the "blue baby" syndrome in children and stomach cancer in adults (BOUMAN et al. 2002; NASCIMENTO et al. 2008).

However, in the tropics, for example, as verified by Santos et al. (2011), 500 to 600 diseases linked to rice culture are known, while in temperate zones, 54 related diseases are known, basically caused by fungi (PRABHU et al. 2006).

As described by Lazzari (2001), foreign matter, impurities and broken grain affect the quality of the product, as in addition to reducing the value of the grain, they increase the risk of fungi and insect growth and interfere with conservation during storage. As described by Lins et al. (2014), they state that the process of grain infection by fungi begins in the field, at maturation and continues during harvesting, drying, storage, transport and processing.

As described by Ferreira (2002), rice that is in a poor state of conservation, including fermentation and mold processes, is considered unfit for consumption; strange odor; substances harmful to health; content of mycotoxins, fungicides and herbicides above the limit established by legislation.

Another relevant aspect related to rice, since its association is closely linked to human consumption as food, is its potential for phytoremediation (KRAEMER, 2008). According to a more current definition, bioremediation is the use of living organisms or their derivatives (eg enzymes) to degrade polluting compounds (Van DILLEWIJN et al. 2009).

Phytoremediation is a bioremediation strategy that consists of procedures that involve the use of plants and their associated microbiota and soil softeners, in addition to agronomic practices that, according to Huang et al. (2005), if applied together, remove, immobilize or render the contaminants harmless to the ecosystem. Its functional conception is based on plant physiology, soil biochemistry and contaminant chemistry, according to several authors, including Nyer and Gatliff (1996), Hinchman et al. (1997) and Marques et al. (2011).

In this reasoning, according to Pires et al. (2003), rice is effective as a plant used in the phytoremediation of contaminated soils for the removal of Selenium (Se).

C4 grasses have a lower amount of chlorophyll molecules per chloroplast, especially chlorophyll b, as they develop well in light saturated environments, not needing to invest energy in the production of energy-collecting pigments (PAULILO et al. 2015). The same result does not apply to rice, where there is a decrease in the levels of chlorophyll a and b according to the increase in the dose of Pb, with the amount of 360 mg.kg-1 having the lowest value related to chlorophyll a and b (IRINEU et al. 2016).

Phytoremediation techniques are based on the use of plants to remove, stabilize and degrade contaminants in soil and sediment (RIBEIRO, 2013).

Also considering the existence of specific accumulator species for application as phytoremediation in different biomes, being a low-cost alternative with the use of green technology that does not impact the environment (TAVARES, 2009).

3.4 Agrochemicals in rice crops

Agrochemicals, such as insecticides, are most commonly used in the culture of cotton, rice, fruits and vegetables; 70% of the demand for herbicides falls on cereals, especially corn, wheat, barley and rice (AGROEMDIA, 2020). Small grain cereals, such as (wheat and barley), corn, rice and cotton, are responsible for use in world of half of the phytosanitary products (ELIAS et al. 2017).

ANVISA (2017) found trifluralin herbicide residue in a rice sample in an amount three times greater than the limit allowed by legislation. This herbicide causes (or prudently may cause) mucosal irritation. However, according to Santos et al. (2021), according to international bodies such as (EPA, DCEA and others), trifluralin [2,6-dinitro-N,N-dipropyl-4-(trifluoromethyl)-benzamine] is considered among the 10 most detrimental to the environment and human beings on all 14 lists of harmful substances promoted by government agencies and NGOs around the world.

The IDEC (2000) in another analysis, this time fungal, found in three samples of rice from the most commercialized brands, residues of folpet [N-(trichloromethylthio)-phthalimine], a fungicide not allowed for this crop. This fungicide is suspected to be carcinogenic.

As reported by Kim and Smith (2000), they claim that more than 3,500 tons of organochlorine pesticides were released on rice cultivated soils in South Korea between 1946 and 1980. And that, due to their chemical properties, according to Flores et al. (2004), more than twenty years after the last applications, residues of these pesticides are still detected today in high quantities.

Several authors, such as Newsome et al. (1998); Schade and Heinzow (1998) and Silva (2009), among many others, state that due to this high resistance to degradation, organochlorines contaminate some agricultural products until the stage of animal and human consumption, among cultures, mainly rice.

In rice culture, just like any other, pesticides can directly affect the plant and, consequently, the fruit that will be consumed, not least the industrial processing received by the rice, making it essential to analyze the active principles, that is, the residues of agrochemicals in grains as a way to ensure food safety and quality (JARDIM et al. 2009).

Pesticides have certain physicochemical characteristics, such as solubility, surface chemistry, ease of reacting with plant media and persistence in the plant, according to active ingredients found in rice samples after analysis (ANVISA, 2020), considering maximum residue limit (LMR), as shown in Table 3.

Table 3 – Presence of active principles in samples analyzed by the LMR, established by the Health Surveillance Agency (ANVISA, 2020), by agrochemicals in rice crops

Active principle (*)

LMR (mg.Kg-1)

1

2,4-D acid

0,2

2

acetamiprid

0,3

3

Azoxystrobin

0,7

4

beta-cypermethrin

0,3

5

bifenthrin

0,7

6

Carbendozin

0,5

7

Carbofuran

0,2

8

Carbosulfan

0,5

9

Cyproconazole

0,4

10

Chlorothalonil

2,0

11

Deltamethrin

1,0

12

Diphenoconazole

1,0

13

dithiocarbamates

3,0

14

esfenvalerate

1,0

15

Etofemprox

3,0

16

lambda-cyhalothrin

1,0

17

Melathion

8,0

18

Myclobutanil

0,5

19

Pyrimphoz-methyl

5,0

20

tetraconazole

1,0

21

thiamethoxam

1,0

(*) Also indicated in the literature as an active ingredient

Source: authors (2021)

The presence of certain pesticide residues in industrialized rice has been a matter of concern on the part of consumers and, consequently, there has been an increase in demand for products free of pesticide residues, such as products marketed with the slogan "Organic product" (IPARDES, 2007; MELON, 2007).

Faced with a great challenge in the search for technologies to promote the degradation of agrochemical residues in food, it is possible to verify the use of technologies that include ultra-violet (UV) radiation, action of oxidizing agents, such as the use of hydrogen peroxide and gas ozone. Ozone gas has been presented as an alternative due to its oxidative action and ease of obtainment, as described by Ikeura et al. (2011).

4 CONCLUSION

It is concluded that, as rice is consumed worldwide, it becomes a vehicle for the contamination of chemical elements or compounds, harmful to human beings and, for this, it must be better monitored and there is a greater level of control, determination of analysis and performance of responsible government agencies so that such effects are minimized.

As a vegetable, rice is subject to carrying chemical compounds inherent to the application of pesticides (herbicides, fungicides, insecticides), that is, agrochemicals for the rational development of production.

Specifically because a large part of the amount produced comes from flooded areas, with an absence or amount of oxygen below normal in the soil, rice absorbs reduced cations by mass flow where, in excess, these elements can be toxic to humans when consumed.

Furthermore, rice already as a product, post-harvest, is subject to contamination by agrochemicals in order to better adapt it to storage, with a view to its commercialization in a timely manner from an economic perspective.

REFERENCES

ACCIOLY, A. M. A.; SIQUEIRA, J. O. Contaminação química e biorremediação do solo. Tópicos em Ciência do Solo.  Lavras: SBCS - Sociedade Brasileira de Ciência do Solo, p. 300-351. 2000.

ADRIANO, D. C. Trace elements in the terrestrial environment. New York: Springer-Verlag, 1986. 533pp. 

AGROEMDIA. Saiba quais culturas usam mais defensivos no Brasil e as que utilizam menos. [S.l.], 2020. c2018. Disponível em: https://agroemdia.com.br/2020/03/03/saiba-quais-culturas-usam-mais-defensivos-no-brasil-e-as-que-utilizam-menos/. Acesso em: 27 de abr. 2021.

ANVISA - Agência Nacional de Vigilância Sanitária. Agrotóxicos e Toxicologia. PARA - Programa de Análise de Resíduos de Agrotóxicos em Alimentos. [S.l.], 2020. Disponível em: https://www.gov.br/anvisa/pt-br/assuntos/agrotoxicos/programa-de-analise-de-residuos-em-alimentos. Acesso em: 25 de mar. 2021.

ANVISA – Agência Nacional de Vigilância Sanitária. Programa de Análise de Resíduos de Agrotóxicos em Alimentos – PARA: Plano Plurianual 2017-2020 – Ciclo 2017/2018. Brasília, 2019. 136 p. Disponível em: https://www.gov.br/anvisa/pt-br/assuntos/agrotoxicos/programa-de-analise-de-residuos-em-alimentos/arquivos/3770json-file-1. Acesso em: 5 de maio de 2021.

BABU, G.S. et al. DDT and HCH residues in basmati rice (Oriza sativa) cultivated in Dehradun (India), Water air and soil pollution. Kluber Academic Publ, New York, v. 144, n. 1, p. 149-157, 2003.

BAIRD, C.; CANN, M. Química Ambiental. Tradução de Marcao Tadeu Grassi. 4. ed. Porto Alegre: Bookman, 2011. 622 p.

BERTON, R. Especiação iônica de nutrientes e de metais pesados em soluções aquosas. Campinas: FUNDAG, 2002. Disponível em: http://homepage.barao.iac.br/destaqMes/EspeciaçãoIônica/especiação.htm. Acesso em: 15 de maio de 2020.

BOUMAN, B. A. M.; CASTAÑEDA, A. R.; BHUIYAN, S. I. Nitrate and pesticide contamination of groundwater under rice-based cropping systems: past and current evidence from the Philippines. Agriculture, ecosystems and environment, [s.l.], v. 92, p. 185-199, 2002.

CARR, R.L.; CHAMBERS, J. E. Kinetic analysis of the in vitro inhibition, aging, and reactivation of brain acetylcholinesterase from rat and channel catfish by paraoxon and chlorpyrifos-oxon. Toxicol. Appl. Pharmacol, [s.l.], v. 139, n. 2, p. 365-373, 1996.

CARVALHO, I. S. Agrotóxicos - Usos e Implicações. Mundo & Vida, Rio de Janeiro, v. 2, n. 1, p. 29-31, 2000.

CASTRO, P. R. C.; SANTOS, V. M.; STIPP, S. R. Nutrição vegetal e biorregulação no desenvolvimento das plantas. Informações Agronômicas, n. 139, p. 9-15, 2012. Disponível em: http://www.ipni.net/publication/iabrasil.nsf/0/3F44E8D5D16E4A7683257A9B0041ACB1/$FILE/IAPage9-15-139.pdf. Acesso em: 27 de abr. 2021.

CHARLESWORTH, S. M. et al. A comparative study of heavy metal concentration and distribution in deposited street dusts in a large and a small urban area: Birmingham and Coventry, West Midlands, UK. Environment International, [s.l.], v. 29, n. 5, p. 563-573, 2003.

CLARKSON, D.T.; HANSON, J. B. The Mineral Nutrition of Higher Plants. Annual Review of Plant Physiology, [s.l.], v. 31, p. 239-298, 1980. DOI: 10.1146/annurev.pp.31.060180.001323 Disponível em: https://doi.org/10.1146/annurev.pp.31.060180.001323.

CONAB - Companhia Nacional de Abastecimento. Produção de grãos da safra 2020/21 segue como maior da história: 268,9 milhões de toneladas. Safra de Grãos 2020/2021 – Segundo levantamento, [s.l.], 2020. Disponível em: https://cast.conab.gov.br/post/2020-11-10_2_lev_graos/#:~:text=Este%20ano%2C%20a%20previs%C3%A3o%20%C3%A9,%C3%A1rea%20plantada%20tamb%C3%A9m%20seja%20recorde. Acesso em: 27 de abr. 2021.

COPATTI, C. E.; GARCIA, L. O.; BALDISSEROTTO, B. Uma importante revisão sobre o impacto de agroquímicos da cultura de arroz em peixes. Biota Neotrop, [s.l.], v. 9, n. 4, 2009. Disponível em:  http://www.biotaneotropica.org.br/v9n4/pt/abstract?thematic-review+bn00509042009. Acesso em: 22 de dez. 2020

COSTA, C. R.; OLIVI, P.; BOTTA, C. M. R.; ESPINDOLA, E. L. G. A toxicidade em ambientes aquáticos: discussão e métodos de avaliação. Química Nova, Campinas, v. 31, n. 7, p. 1820-1830, 2008.  DOI: https://doi.org/10.1590/S0100-40422008000700038.

CUNHA, K. P. V. et al. Disponibilidade, acúmulo e toxidez de cádmio e zinco em milho cultivado em solo contaminado. Revista Brasileira de Ciência do Solo, [s.l.], v. 32, n. 3, p. 1319-1328, 2008. DOI: 10.1590/S0100-06832008000300039 Disponível em: https://doi.org/10.1590/S0100-06832008000300039.

D’AMATO, C.; TORRES, J. P. M.; MALM, O. DDT (Di Cloro Difenil Tricloetano): Toxidade e contaminação ambiental - Uma Revisão. Quimica Nova, Campinas, v. 25, n. 6, p. 995-1002, 2002. Disponível em: https://www.scielo.br/pdf/qn/v25n6a/12776.pdf?origin=publication_detail. Acesso em: 30 de abr. 2021.

DIMOND, J. B.; OWEN, R. B. Long-tem residue of DDT compounds in forest soils in Maine. Environmental Pollution, London, v. 92, n. 2, p. 227-230, 1996.

ELIAS, M.C.; OLIVEIRA, M.; VANIER, N. L. Tecnologias de pré-armazenamento, armazenamento e conservação de grãos. Polo de Inovação Tecnológica em Alimentos e a Região Sul Corede-Sul, SCT-RS, UFPEL, p.102, 2017. Disponível em: http://labgraos.com.br/manager/uploads/arquivo/material---prova-1.pdf. Acesso em: 5 de maio de 2021.

EMBRAPA ARROZ E FEIJÃO. Dados de conjuntura da produção de arroz (Oryza sativa L.) no Brasil (1985-2015): área, produção e rendimento. Santo Antonio de Goiás: Embrapa Arroz e Feijão, 2016. Disponível em: http://www.cnpaf.embrapa.br/socioeconomia/index.htm. Acesso em: 2 de maio de 2021

EPA-US - United States Environmental Protection Agency. Chemicals under the Toxic Substances Control Act (TSCA). 2020. Disponível em: https://www.epa.gov/chemicals-under-tsca. Acesso em: 30 de abr. 2021.

EVALD, A. Qualidade do solo na cultura do arroz cultivado em várzea roraimense. 2016. Dissertação (Mestrado em Agronomia) – Programa de Pós-Graduação em Agronomia, Universidade Federal de Roraima, Boa vista, 2016.

FAO. Informe FAO de actualización de precios del arroz. 2021. Disponível em: http://www.fao.org/economic/est/publicaciones/publicaciones-sobre-el-arroz/informe-fao-de-actualizacion-de-precios-del-arroz/es/. Acesso em: 30 de abr. 2021.

FERREIRA, S. M. R. Classificação de Arroz, Oriza sativa L. Higiene Alimentar, UFPR, v. 16, n. 99, p. 35-45, 2002.

FIORAVANTI, C. A maior diversidade de plantas do mundo. Revista Pesquisa/Fapesp, 241. ed. São Paulo, 2016, https://revistapesquisa.fapesp.br/a-maior-diversidade-de-plantas-do-mundo/, e acessado em 30.abr.2021.

FLORES, A.V. et al. Organoclorados: um problema de saúde pública. Ambiente & sociedade. Campinas, v. 7, n. 2, 2004. DOI 10.1590/S1414-753X2004000200007 Disponível em: https://doi.org/10.1590/S1414-753X2004000200007

GIL, A. C. Como elaborar projetos de pesquisa. 6. ed. [S.l.]: Editora Atlas, 2017. E-Book (188 p.).

HICKERT, L. R. Otimização da hidrólise da casca de arroz (Oryza Sativa) e avaliação da capacidade de bioconversão deste hidrolisado a etanol e xilitol por leveduras. 2010. 117 f. Dissertação (Mestrado em Microbiologia Agrícola e do Ambiente) – Universidade Federal do Rio Grande do Sul, Porto Alegre, 2010.

HINCHMAN, R. R.; NEGRI, M. C. Providing the baseline science and data for real-life phytoremediation applications: partnering for sucess. In: THIBEAULT, C.A. & SAVAGE, L.M., eds. Phytoremediation. Seattle: IBC, 1997. 305 p.

HORST, D. J. Avaliação da produção energética a partir de ligninas contidas em biomassas. 2013. 106 f. Dissertação (Mestrado em Engenharia da Produção) – Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2013.

HUANG, X-D. et al. A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (HTPs) from soils. Microchem. J., [s.l.], v. 81, p. 139-147, 2005.

HUBER, A.; BACH, M.; FREDE, H. G. Pollution of surface waters with pesticides in Germany: modeling non-point source inputs. Agric. Ecos. Environ, [s.l.], v. 80, n. 3, p. 191-204, 2000.

IDEC - Instituto de Defesa do Consumidor. Teste. Feijão com arroz. Consumidor S.A. São Paulo, n. 48, 2000. Disponível em: http://www.uol.com.br/idec/consumidorsa. Acesso em: 14 de jun. 2020.

IKEURA, H.; KOBAYASHI, F.; TAMAKI, M. Removal of residual pesticides in vegetables using ozone microbubbles. Journal of Hazardous Materials, Tokyo, v. 186, n. 1, p. 956-959, 2011.

INCA - Instituto Nacional do Câncer. Agrotóxico: Causas e Prevenção. 2019. Disponível em: https://www.inca.gov.br/exposicao-no-trabalho-e-no-ambiente/agrotoxicos. Acesso em: 30 de abr. 2021.

IPARDES. O mercado de orgânicos no Paraná: caracterização e tendências. Curitiba, 2007. Disponível em: http://www.ipardes.pr.gov.br/sites/ipardes/arquivos_restritos/files/documento/2020- 03/RP_mercado_organicos_2007.pdf. Acesso em: 15 de nov. 2020.

IRINEU, L. E. S. S. et al. Avaliação dos efeitos fitotóxicos do Chumbo em braquiária e arroz, utilizados como fitorremediadores em solos contaminados. XIII Congresso Nacional de Meio Ambiente de Poços de Caldas – MG, 21, 22 e 23 de setembro de 2016. Disponível em: http://www.meioambientepocos.com.br/anais-2016/252.%20AVALIAÇÃO%20DOS%20EFEITOS%20FITOTÓXICOS%20DO%20CHUMBO%20EM%20BRAQUIÁRIA%20E%20ARROZ,%20UTILIZADOS%20COMO%20FITORREMEDIADORES%20EM%20SOLOS%20CONTAMINADOS%20(1).PDF. Acesso em: 5 de maio de 2021.

JARDIM, I. C. S. F.; ANDRADE, J. A.; QUEIROZ, S. C. N. Resíduos de agrotóxicos em alimentos: uma preocupação ambiental global - Um enfoque às maçãs. Química Nova, Campinas, v. 32, n. 4, p.  996-1012, 2009. ISSN 1678-7064. DOI 10.1590/S0100-40422009000400031. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422009000400031&lng=en&nrm=iso>. Acesso em: 05 abr. 2021.

KIM, J. H.; SMITH, A. Distribution of organochlorine pesticides in soils from South Korea. Chemosphere, London, v. 43, p. 137-140, 2000. Disponível em: https://pubmed.ncbi.nlm.nih.gov/11297392/. Acesso em: 15 de mar. 2021.

KRAEMER, A. F. Residual da mistura formulada dos herbicidas imazethapur e imazapic em áreas de arroz sob diferentes manejos de solo. 2008. 66f. Dissertação (Mestrado em Agronomia) - Universidade de Santa Maria, Santa Maria, 2008.

LACERDA, R. T. O.; ENSSLIN, L.; ENSSLIN, S. R. Uma análise bibliométrica da literatura sobre estratégia e avaliação de desempenho. Gestão & Produção, [s.l.], v. 19, n. 1, p. 59-78, 2012. DOI: http://dx.doi.org/10.1590/S0104- 530X2012000100005

LAZZARI, F. A. A importância da qualidade física, sanitária e nutricional de grãos e subprodutos. In: Seminário Nacional de Milho Safrinha - II Conferência Nacional De Pós-Colheita, Sag-Mercosul - II Simpósio em Armazenagem Qualitativa de Grãos do Mercosul., 2001, Londrina, Resumos e palestras. FAPEAGRO, p. 108-119. 2001.

LIMA, D. P. Avaliação da contaminação por metais pesados na água e nos peixes da bacia do rio Cassiporé, estado do Amapá, Amazônia, Brasil. 2013. 147 f. Dissertação (Mestrado em Biodiversidade Tropical) – Programa de Pós-Graduação em Biodiversidade Tropical, Universidade Federal do Amapá, Macapá, 2013. Disponível em: https://www2.unifap.br/ppgbio/files/2010/05/Daniel_Lima_Disserta%C3%A7%C3%A3o_Final.pdf. Acesso em: 22 de mar. 2021.

LINS, J. L. F. et al. Ocorrência de fungos de campo e armazenamento em ingredientes e rações para suínos. Revista Verde, Mossoró, v. 9, n. 2, p. 14-20, 2014. Disponível em: file:///C:/Users/asus/Downloads/Dialnet-OcorrenciaDeFungosDeCampoEArmazenamentoEmIngredien-7381669.pdf. Acesso em: 4 de maio de 2021.

LOPES, A. S.; ABREU, C.A.; SANTOS, G. C. G. Micronutrientes. In: NEVES, J. C. L.; DIAS, L. E.; BARROS, N. F.; CANTARUTTI, R. B.; NOVAIS, R. F.; ALVAREZ, V. H. (Coord.). Tópicos em Ciência do Solo. Viçosa: Sociedade Brasileira de Ciência do Solo, 2006.

LOURENÇO, G. F. O arroz: a cultura mais importante do mundo. 2009. Dissertação (Mestrado em Biotecnologia) - Laboratório de Biotecnologia – LBT/CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos do Goytacazes, 2009. p103.

MACHADO, B. R. Avaliação da toxicidade ambiental do agrotóxico Glifosato em solo utilizando como bioindicador minhocas da espécie Eiseniaandrei. 2016. 64 f. Trabalho de Conclusão de Curso (Curso de Engenharia Ambiental e Sanitária) – Centro de Engenharia, Universidade Federal de Pelotas, Pelotas, 2016. Disponível em: https://wp.ufpel.edu.br/esa/files/2016/10/TCC-BETTINA-MACHADO.pdf. Acesso em: 3 de maio de 2021.

MALUF, R. S.; FLEXOR, G. (Org.) Questões agrárias, agrícolas e rurais Conjunturas e políticas públicas. Rio de Janeiro: E-papers Serviços Editoriais Ltda, 2017. https://lemate.paginas.ufsc.br/files/2018/04/MalufR-FlexorG-Quest%C3%B5es-agr%C3%A1rias-e-agr%C3%ADcolas_colet%C3%A2nea.pdf, acessado em 27.abr.2021.

MARQUES, M. et al. Desafios técnicos e barreiras sociais, econômicas e regulatórias na fitorremediação de solos contaminados. Revista Brasileira Ciência do Solo, Viçosa, v. 35, n. 1, p. 1-11, 2011. DOI 10.1590/S0100-06832011000100001. Disponível em: http://dx.doi.org/10.1590/S0100-06832011000100001.

MOREIRA, F. M. S.; SIQUEIRA, O. S. Microbiologia e Bioquímica do solo. 2. ed. atual. aum. [S.l.]: Editora UFLA, 2006. 729 p.

NASCIMENTO, T. S. et al. Methemoglobinemia: from diagnosis to treatment. Rev. Bras. Anestesiol, [s.l.], v. 58, n. 6, p. 651-664, 2008. DOI 10.1590/S0034-70942008000600011. Disponível em: https://doi.org/10.1590/S0034-70942008000600011.

NELLESSEN, J. E.; FLETCHER, J. S. Assessment of published literature on the uptake, accumulation, and translocation of heavy metals by vascular plants. Chemosphere, [s.l.], v. 27, p. 1669-1680, 1993.

NEWSOME, W. H. et al. Residues of polychlorinated biphenyl (PCB) in fatty foods of the Canadian diet. Food Additives and Contaminants, [s.l.], v. 15, p. 19-29, 1998.

NYER, E. X.; GATLIFF, E. G. Phytoremediation. Ground Water Monitoring and Remediation, [s.l.], v. 16, n. 1, p. 58-62, 1996.

OLIVEIRA, L. R. Metais pesados e atividade enzimática em latossolos tratados com lodo de esgoto e cultivados com milho. 2008. Tese (Doutorado em Agronomia) – Faculdade de Ciências Agrárias e Veterinárias Campus de Jaboticabal, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, 2008.

OLIVEIRA, J. L. S. Recursos hídricos: percepção ambiental de agricultores e estudo dos efeitos ecotoxicológicos da água do rio Piancó e de metais pesados em espécies agrícolas. 2019. 93 f. Dissertação (Mestrado em Desenvolvimento e Meio Ambiente) – Programa Regional de Pós-Graduação em Desenvolvimento e Meio Ambiente, Universidade Federal da Paraíba, João Pessoa, 2019. Disponível em: https://repositorio.ufpb.br/jspui/bitstream/123456789/16002/1/Arquivototal.pdf. Acesso em: 1 de maio de 2021.

PAULILO, M. T. S. et al. Fisiologia vegetal. Florianópolis: UFSC, 2015. 182p. Disponível em: https://uab.ufsc.br/biologia/files/2020/08/Fisiologia-Vegetal.pdf. Acesso em: 4 de maio de 2021.

PIRES, F.R. et al. Fitorremediação de solos contaminados com herbicidas. Planta Daninha, Viçosa, v. 21, n. 2, p. 335-341, 2003. DOI 10.1590/S0100-83582003000200020. Disponível em: https://doi.org/10.1590/S0100-83582003000200020.

PISQ - Programa Internacional de Segurança Química. Substâncias químicas perigosas à saúde e ao ambiente / Organização Mundial da Saúde. Tradução Janaína Conrado Lyra da Fonseca; Mary Rosa Rodrigues de Marchi; Jassyara; Conrado Lyra da Fonseca. São Paulo: Cultura Acadêmica, 2008.

PROCHNOW, R. Alternativas tecnológicas para produção integrada de arroz orgânico. 2002. 193 f. Dissertação (Mestrado em Agroecossistemas) – Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, 2002. Disponível em: https://repositorio.ufsc.br/handle/123456789/83255. Acesso em 30 de maio 2022.

RIBEIRO, M. A. C. Contaminação do Solo por Metais Pesados. Dissertação (Mestrado em Engenharia do Ambiente). Universidade Lusófona de Humanidades e Tecnologias. Lisboa, Portugal, p. 249, 2013.

RIBEIRO, M. L. et al. Contaminação de águas subterrâneas por pesticidas: avaliação preliminar. Química Nova, Campinas, v. 30, n. 3, p. 688-694, 2007. DOI: 10.1590/S0100-40422007000300031 Disponível em: https://doi.org/10.1590/S0100-40422007000300031.

ROYTE, E. Inseticidas amplamente utilizados também podem ser uma ameaça a mamíferos. National Geographic, 2021. Disponível em: https://www.nationalgeographicbrasil.com/meio-ambiente/2021/02/inseticidas-amplamente-utilizados-tambem-podem-ser-uma-ameaca-a-mamiferos. Acesso em: 1 de maio de 2021.

SANTANA, E. P. Qualidade de solos urbanos: Teores de metais pesados em parques públicos de Salvador. 2017. 64 f. Trabalho de conclusão de Curso (Bacharelado em Geografia) – Universidade Federal da Bahia, Salvador, 2017. Disponível em: http://www.geografia.ufba.br/TCC%20EVELEN%20VERSAO%20CORRIGIDA.pdf. Acesso em 26.abr.2021.

SANTIAGO, C. M. et al. Arroz, O produtor pergunta, a Embrapa responde. Brasília: Embrapa. Empresa Brasileira de Pesquisa Agropecuária Embrapa Arroz e Feijão. Ministério da Agricultura. Pecuária e Abastecimento. 2013. 252 p.

SANTOS, V. M. R. et al. Compostos organofosforados pentavalentes: histórico, métodos sintéticos de preparação e aplicações como inseticidas e agentes antitumorais. Quím. Nova, Campinas, v. 30, n. 1 p. 159-170, 2007.  DOI 10.1590/S0100-40422007000100028 Disponível em: https://doi.org/10.1590/S0100-40422007000100028.

SANTOS, G.R. et al. Danos causados por doenças fúngicas no arroz cultivado em várzeas no Sul do Estado do Tocantins. Bragantia, Campinas, v. 70, n. 4, p. 869-875, 2011. Disponível em: https://www.scielo.br/pdf/brag/v70n4/20.pdf. Acesso em: 28 de abr. 2021.

SANTOS, C. M. et al. Potencial inibidor de trifluralin na micorrização e desenvolvimento de plantas - uma revisão de literatura. Brazilian Journal of Development, Curitiba, v. 7, n. 3, p. 22122-22133, 2021. DOI:10.34117/bjdv7n3-090.

SCHADE, G.; HEINZOW, B. Organochlorine pesticides and polychlorinated biphenyl (PCB) in human milk of mother living in Northern Germany: Current extent of contamination, time trend from 1986 to 1997 and factors that influence the levels of contamination. Germany. Sci. Total Environ, [s.l.], v. 215, p.31-39, 1998.

SCHMIDT, C. A. P. et al. Concentrações de metais pesados em grãos de café produzidos em lavouras sobre solos originados do basalto e do arenito Caiuá. Ciência Rural, Santa Maria, v. 39, n. 5, p. 1590-1593, 2009. Disponível em: https://www.scielo.br/pdf/cr/v39n5/a195cr480.pdf. Acesso em: 28 de mar. 2021.

SILVA, G. R. Níveis de Agrotóxicos Organoclorados e Perfil Alimentar na Cidade dos Meninos - Duque de Caxias, RJ, Brasil, entre 2003 e 2004. Orientador: Prof. Dr. Josino Costa Moreira. 81 f. Dissertação (Mestrado em Ciências na área de Saúde Pública e Meio Ambiente), Escola Nacional de Saúde Pública Sergio Arouca, Rio de Janeiro, 2009.  Disponível em: https://www.arca.fiocruz.br/bitstream/icict/2399/1/ve_Gabriela_Ramos_ENSP_2009.pdf. Acesso em: 4 de maio de 2021.

SILVA, C. A. et al. Disponibilidade de metais pesados para milho cultivado em Latossolo sucessivamente tratado com lodos de esgoto. Revista Brasileira de Ciência do Solo. Viçosa, v. 30, p. 353-364, 2006.

SILVA, M. L. S.; VITTI, G. C.; TREVIZAM, A. R. Concentração de metais pesados em grãos de plantas cultivadas em solo com diferentes níveis de contaminação. Pesquisa agropecuária brasileira, Brasília, v. 42, n. 4, p. 527-535, 2007. DOI 10.1590/S0100-204X2007000400011 Disponível em: https://doi.org/10.1590/S0100-204X2007000400011.

SILVEIRA, P. S. et al. Revisão sistemática da literatura sobre estigma social e alcoolismo. Universidade Federal de Juiz de Fora. Estudos de Psicologia, Juiz de Fora, v. 16, n. 2, p. 131-138, 2011. Disponível em: https://www.scielo.br/pdf/epsic/v16n2/v16n2a03. Acesso em: 28 de mar. 2021.

SOUZA, S. M. Qualidade tecnológica de grãos de arroz biofortificados com minerais. 77 f. Dissertação (Mestrado em Ciências do Alimento) – Universidade Federal de Lavras, Lavra 2018. Disponível em: http://repositorio.ufla.br/bitstream/1/30984/1/DISSERTA%C3%87%C3%83O_Qualidade%20tecnol%C3%B3gica%20de%20gr%C3%A3os%20de%20arroz%20biofortificados%20com%20minerais.pdf. Acesso em: 28 de mar. 2021.

SOUZA, A. C. V. Pesquisa com arroz irrigado (Oryza sativa L.) no sistema pré-germinado: melhoramento genético, toxidez por ferro e brusone. 2012. Trabalho de Conclusão de Curso (Graduação em Agronomia) – Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, 2012.

TAVARES, S. R. L. Fitorremediação em solo e água de áreas contaminadas por metais pesados provenientes da disposição de resíduos perigosos. 2009. Tese (Doutorado em Engenharia Civil) – Programa de Pós-graduação em Engenharia Civil (COPPE), Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2009. Disponível em: https://www.alice.cnptia.embrapa.br/bitstream/doc/578247/1/TeseSilvioCompleta.pdf. Acesso em: 3 de abr. 2021.

TREINTA, F. T. Novas Oportunidades de Negócio com Impacto Social através da Inovação: Proposta de Modelo de Negócio Social. 2011. Dissertação (Mestrado em Engenharia de Produção) - Universidade Federal Fluminense, Niterói, 2011.

TREINTA, F. T. et al. Metodologia de pesquisa bibliográfica com a utilização de método multicritério de apoio à decisão, 2013. Production, [s.l.], v. 24, n. 3, p. 508-520, 2014 DOI: 10.1590/S0103-6513201300500007. Disponível em: https://www.scielo.br/pdf/prod/2013nahead/aop_prod0312.pdf e acessado em 23.mar.2021.

Van DILLEWIJN, P. et al. Bioremediation, a broad perspective. Microbial Biotechnol, [s.l.], v. 2, p. 125-127, 2009. DOI: 10.1111/j.1751-7915.2009.00091.x

VARGAS, T. Transferência de elementos maiores, traços e elementos das terras raras no sistema fertilizante - solo - água subterrânea em sedimentos quarternários da região de águas claras, município de Viamão (RS), Dissertação (Mestrado em Geociências) – Programa de Pós Graduação em Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2010.

VERGARA, S. C. Projetos e relatórios de pesquisa em administração. São Paulo: Atlas, 2003.

VILLANUEVA, F. C. A. et al. Mudanças químicas e fitodisponibilidade de zinco estimada por método isotópico, em solo tratado com lodo de esgoto. Química Nova, Campinas, v. 35, n. 7, p. 1348-1354, 2012. DOI: 10.1590/S0100-40422012000700012 Disponível em: https://doi.org/10.1590/S0100-40422012000700012.

VINHAL, D. C.; SOARES, V. H. C. Intoxicação por Organofosforados: Uma revisão da literatura. Revista Científica FacMais, [s.l.], v. 14, n. 3, 2018. Disponível em: https://revistacientifica.facmais.com.br/wp-content/uploads/2018/12/6.-Intoxicacao_por_organofosforados-VERS%C3%83O-PARA-PUBLICA%C3%87%C3%83O.pdf. Acesso em: 30 de abr. 2021.

WALTER, L. C. Simulação da produtividade de grãos de arroz irrigado em cenário futuro no estado do Rio Grande do Sul. Tese (Doutorado em Engenharia Agrícola) – Universidade Federal do Rio Grande do Sul, Porto Alegre, 2014. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/3614/WALTER%2C%20LIDIANE%20CRISTINE.pdf?sequence=1&isAllowed=y. Acesso em: 1 de abr. 2021.

WEBER, J. M. Arroz: Características químicas, culinárias e nutricionais das diferentes variedades consumidas no Brasil. 2012. Trabalho de Conclusão de Curso (Graduação em Nutrição) – Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, 2012.  Disponível em: https://bdm.unb.br/bitstream/10483/6333/1/2012_JessicaMunizWeber.pdf. Acesso em: 30 de abr. 2021.

YARON, B.; CALVET, R.; PROST, R. Soil pollution - processes and dynamics. Springer, Berlin, Heidelberg New York, 1996. 313 p.

YOSHIDA, S. Fundamentals of rice science. Los Baños: IRRI - International Rice Research Institute, 1981. 269 p.

ZILIO, A. M. Avaliação da adequação nutricional das refeições de uma unidade de alimentação e nutrição hospitalar de Porto Alegre (RS). 2009. Trabalho de Conclusão de Curso (Graduação em Nutrição) – Faculdade de medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2009. https://www.lume.ufrgs.br/bitstream/handle/10183/24655/000747841.pdf? Acesso em 28 abr. 2021.

Authorship contributions

1 – Frederico Fonseca da Silva (Corresponding author)

PhD in Irrigation and Environment, Professor and researcher at IFPR - Federal Institute of Parana, Campus Curitiba (Curitiba - Paraná, Brazil).

https://orcid.org/0000-0003-2817-6983 • prof.frederico.silva@gmail.com

Contribuition: Formal Analysis, Validation, Investigation, Writing – review & editing, Methodology.

2 – Wilson Sacchi Peternella

Professor and researcher at UFRO - Federal University of Rondonia (Porto Velho - Rondônia, Brazil). PhD. in Soil Science and Plants Nutrition.

https://orcid.org/0000-0003-3931-515X • wpeternella@yahoo.com

Contribuition: Conceptualization, Formal Analysis, Validation, Investigation, Writing – review & editing

How to quote this article

SILVA, F., F.; PETERNELLA, W., S. Chemical Residues in Rice Culture: A Bibliographic Review. Ciência e Natura, Santa Maria, v. 44, e26, p. 01-23, 2022. DOI 10.5902/2179460X67670. Disponível em: https://doi.org/10.5902/2179460X67670.