
 

 
 

ISSN 2179-460X

 
 

Ci. e Nat., Santa Maria, v. 44, e33, 2022  •  https://doi.org/10.5902/2179460X65707 

Submitted: 10/05/2021  •  Approved: 10/12/2021  •  Published: 12/07/2022 

 

 
Published by Ciência e Natura under a CC BY-NC-SA 4.0 license. 

 

Physics 

Detailed demonstrations of the relations between 

coordinate systems in the celestial sphere 

Demonstrações detalhadas das relações entre sistemas de 

coordenadas na esfera celeste 

Lucas Antonio CaritáI , Carla Patrícia Ferreira dos SantosII   

I Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São José dos Campos, SP, Brasil 
II Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, SP, Brasil  

ABSTRACT 

Spherical Geometry is the basis for what we know as Positional Astronomy. This is one of the oldest 

approaches to Astronomy as a science, being used by ancient Greeks and possibly by other people before 

that. Concerning a more formal current mathematical description, there are several types of coordinate 

systems with respect to the celestial sphere. Each system differs in the choice of its referential plan. 

Several connections between elements of different types of coordinates are well known once it is a well-

developed field. However, the reader will not find in the literature complete mathematical proofs for 

such formulas. Thus, this article fills that gap. We present in this text several formulas relating the 

coordinates Zenital Distance, Hour Angle, Azimuth, Declination and Geographic Latitude and their 

mathematical proofs in detail, explaining all possible steps. Our main contribution is in the form of the 

presentation and deduction of classical results from Positional Astronomy. 

Keywords: Positional astronomy, Spherical astronomy, Mathematical astronomy, Spherical geometry, 

Spherical trigonometry 

RESUMO 

A Geometria Esférica é a base para o que conhecemos como Astronomia de Posição, que é uma das 

abordagens mais antigas da Astronomia como ciência, sendo usada pelos gregos antigos e 

possivelmente por outras civilizações passadas. No que diz respeito a uma descrição matemática atual 

mais formal, existem vários tipos de sistemas de coordenadas em relação à esfera celeste. Cada sistema 

difere na escolha de seu plano referencial. Diversas conexões entre elementos de diferentes tipos de 

coordenadas são bem conhecidas por se tratar de uma área bem desenvolvida. No entanto, o leitor não 

encontrará na literatura demonstrações matemáticas completas para tais fórmulas. Assim, este artigo 

preenche essa lacuna. Apresentamos neste texto diversas fórmulas relacionando as coordenadas 

Distância Zenital, Ângulo Horário, Azimute, Declinação e Latitude Geográfica e suas demonstrações 
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matemáticas em detalhes, explicando todos os passos possíveis. Nossa principal contribuição está na 

forma de apresentação e dedução de resultados clássicos da Astronomia de Posição. 

Palavras-chave: Astronomia de posição, Astronomia esférica, Astronomia matemática, Geometria 

esférica, Trigonometria esférica 

1 INTRODUCTION 

Speculation about the Universe is believed to have been occurring since 

prehistoric times. The search for understanding what surrounds us has been 

constant for mankind. Egyptian, Babylonian and Greek mathematicians and 

astronomers struggled to understand the nature of the stars in the sky, their 

magnitudes, distances from Earth, motions, as well as the shape of our planet 

(CARITÁ, 2018; CHODOROVÁ; et al., 2017; ROZENFELD, 2012; BARBOSA, 2002). 

Around 550 BC, the Greek mathematician Thales of Miletus introduced the 

foundations of Egyptian geometry and astronomy to Greece. Thales and 

Anaximander (610–546 BC) was the first to propose celestial models based on the 

motion of the stars. Among the ancient Greek mathematicians who observed and 

conjectured about the sphericity of the Earth and the motion of the stars, we can 

mention: Pythagoras (572–497 BC), Philolaus of Croton (470–390 BC), Aristotle 

(384–322 BC), Aristarchus of Samos (310–230 BC), Eratosthenes (276–194 BC), 

Hipparchus (160–125 BC) and Ptolemy (85–165 AD). These mathematicians were 

responsible for the first studies of the motion of the stars and the terrestrial 

sphericity, and also explained the Moon phases. These concepts were used until 

the Renaissance, in the 16th century. It is worth mentioning that, during the lifetime 

of these mathematicians, Mathematics was undergoing a formalization process, 

that is, it was beginning to be presented formally with axioms, lemmas and 

theorems. 

Taking a more formal approach, we can mention the works of the 

mathematician Euclid (300 BC), in particular his “Elements”.  We will highlight the 

Euclid’s fifth postulate and its consequences. This fifth postulate says “If a line 

segment intersects two straight lines forming two interior angles on the same side 



CARITÁ, L. A.; SANTOS, C. P. F. | 3 

 
 

Ci. e Nat., Santa Maria, v.44, e33, 2022 

that sum to less than two right angles, then the two lines, if extended indefinitely, 

meet on that side on which the angles sum to less than two right angles”. 

Mathematicians of antiquity and the Middle Ages (such as: Proclus and John Wallis) 

believed that this postulate was actually a theorem and tried to proof it, but were 

unsuccessful (BARBOSA, 2002; ARCARI, 2008). The beginning of the 19th century 

found geometrists still in search for a “proof” of  the Euclid’s fifth postulate, but 

without success. However, such attempts to prove the postulate culminated in the 

formulation of new geometries called non-Euclidean (CHODOROVÁ; et al., 2017). 

These geometries received this name because they are no longer explained by the 

fundamentals developed by Euclid. 

Spherical Geometry (a non-Euclidean geometry) was essential for developing 

location geography and navigation (CHODOROVÁ; et al., 2017; SANTOS; et al., 2021). 

Interestingly, long before the non-Euclidean geometries were made official, the 

Greeks, in antiquity, already used Spherical Geometry intuitively to study 

Astronomy. It was this civilization that proposed the concept of celestial sphere, 

initiating the first studies in Positional Astronomy (also known as Spherical 

Astronomy), which mainly concerns the directions in which the celestial bodies are 

seen, without worrying about their distances (CARITÁ, 2018; SMART, 1977). 

The idea of a celestial sphere goes back to the time of ancient Greek 

astronomers, who conjectured that the star-encrusted sky was a large sphere, in 

which the Earth would be enveloped (ROZENFELD, 2012). From this conjecture, the 

concept of the celestial sphere arose as an imaginary sphere, with a gigantic radius, 

rotating around an axis (which is the extension of the Earth’s axis of rotation), in 

which the celestial bodies and stars appear to move (SMART, 1977). Spherical 

Geometry offers tools for the analytical study of a celestial sphere model. We can 

count on a few different coordinate systems for the celestial sphere. Such systems 

are well known and provide ways to study positions of stars and celestial bodies in 

the sphere (CARITÁ, 2018; SMART, 1977; MCNALLY, 1974). These coordinate 

systems can be related. There are some mathematical formulas that connect 
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coordinates of different systems. These connections are extremely useful for 

Positional Astronomy, since they favor the study of the dynamics of the apparent 

motions of stars and celestial bodies. As a result, it is possible to make predictions 

of when a star will, for example, cross a specific point in the sky. Among other 

applications, such formulas also facilitate the predictions of rising and setting times 

of stars. 

In this context, this article aims to present mathematical proofs (using 

spherical trigonometry) for some connections between elements of the hourly, 

equatorial and horizontal coordinate systems, demonstrations that are not found 

in bibliographic references, books or articles on this subject. 

2 MATHEMATICAL BACKGROUND 

The mathematics used in Positional Astronomy is the Spherical Geometry, in 

particular the trigonometry in spherical triangles. There are good texts on Spherical 

Geometry1. Thus, in this work, we do not intend to exhaust the possibilities of 

approaching this subject. We do intend to present some concepts, which, in 

addition to presenting this geometry to the reader, will support the development 

of the formulas of section 5, which connect some coordinates of different systems 

in the celestial sphere, which is the main purpose of this work. 

A surface where all of its points are equidistant from a fixed point is called a 

spherical surface. The fixed point is called the center and the distance from the 

center to any point on the surface is the radius. A sphere is a solid bounded by a 

spherical surface. 

The boundary of every plane section of a sphere is a circle, called a great 

circle when the plane passes through the center of the sphere. We consider the 

                                                           
1 The reader can check some in Smart (1977), Van Brummelen (2012), Murray (1900), Whittlesey (2019) 

and Santos (2020). 
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distance between two points on the spherical surface as the shorter arc of the great 

circle passing through them (this distance can naturally be measured as an angle).  

Figure 1 -  Example of a spherical triangle with vertices A, B and C, sides a, b and c, and 

internal angles    ,     and     in a sphere of center O 

 

Source: Authors (2021) 

A spherical angle is the angle formed by two arcs of great circles with one 

end in common. The measure is the same as the dihedral angle of the planes of 

the arcs forming the angle. Three points not belonging to the same great circle, 

connected by the arcs of great circles that define their distances, determine a 

spherical triangle. Such points are called vertices. Figure 1 shows a spherical 

triangle with vertices A, B and C, sides measuring a, b and c, and internal angles 

measuring ,  and . In the illustrated layout, which we will adopt as a standard 

throughout our text, angle  is opposite to side a, angle  is opposite to side b 

and angle  is opposite to side c. The sides and internal angles of a spherical 

triangle ABC always satisfy: 0° < 𝑎 < 180°, 0° < 𝑏 < 180°, 0° < 𝑐 < 180°, 0° < <

180°, 0° < < 180° and 0° < < 180°. 
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Spherical triangles satisfy several interesting properties,  such as (a) one side 

is always less than the sum of the other two and greater than their difference; (b) 

the sum of the internal angles is greater than 180° and less than 540°; and (c) the 

sum of the three sides is less than 360°. Concerning spherical trigonometry, we can 

highlight two main theorems: Law of Cosines and Law of Sines. Virtually all other 

known formulas that relate sides and internal angles to spherical triangles are 

deduced from these two theorems. In this work, we will prove these results as was 

proven in article Caritá (2018), but we will now use more details. In order to prove 

them, consider Figure 2, which illustrates a spherical triangle ABC in a sphere of 

center O. 

Consider a straight line perpendicular to the OBC plane that passes through 

vertex A of the spherical triangle, P is the point of intersection of this line with the 

OBC plane. The line segment AP is perpendicular to the OBC plane. Using a similar 

process, starting from P, the PM and PN line segments are obtained, perpendicular 

to the OB and OC line segments, respectively. Thus, the Euclidean triangles APN, 

APM, ONP, OMP and OPA are right triangles. Therefore, it follows that 

 (1) 

 (2) 

 (3) 

 (4) 

 (5) 

Replacing Equations (2) and (3) in (1), it follows: 

 

This implies that the Euclidean triangle OMA is also a right triangle. Replacing 

Equations (4) and (5) in (1), it follows: 
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Figure 2 - Example of a spherical triangle and some useful projections. This figure shows 

the right triangles APN, APM, ONP, OMP and OPA, which are Euclidean. This means that 

useful formulas, known from traditional trigonometry (see Appendix A), can be used in 

proofs of Spherical Geometry theorems, as long as the projections shown in this image 

are used 

 

Source: Authors (2021) 

This implies that the Euclidean triangle ONA is also a right triangle. Therefore, 

all Euclidean triangles APN, APM, ONP, OMP, OPA, OMA and ONA are right triangles. 

From the Euclidean right triangle ONA, since the angle at vertex O coincides with 

side b of the spherical triangle, it follows that 

 

(6) 

(7) 

From the Euclidean right triangle OMA, since the angle at vertex O coincides 

with side c of the spherical triangle, it follows: 

 (8) 
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 (9) 

From the Euclidean right triangle OMP, denoting by α the angle at the vertex 

in O, it follows that 

 

(10) 

(11) 

From the Euclidean right triangle ONP, denoting by  𝛽 the angle at the vertex 

in O, it follows that 

 

(12) 

(13) 

Also from the Euclidean triangles APN and APM, it follows that 

  

However, as and are the same dihedral angles that define the angles  

and , respectively, it follow: 

 

(14) 

(15) 

 

(16) 

(17) 

Since all the formulas mentioned above are related to Euclidean triangles, 

we can make use of formulas known from traditional trigonometry. Some useful 
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formulas for this article are in Appendix A. From these reasonable previous 

considerations, we can enunciate and prove important results regarding 

trigonometry in spherical triangles, starting by the Law of Cosines and the Law of 

Sines. 

Theorem 1 - (The Law of Cosines) - Let be a spherical triangle of vertices A, B and C, 

with internal angles measuring and  whose opposite sides measure a, b and c, 

respectively. So: 

 

Proof: 

Once 𝛼 +  𝛽 =  𝑎, from Equations (8) and (10) it follows that 

 

 

Using the expression (37) from Appendix A combined with Equations (12) and 

(13): 

 

 

Hence, from Equation (6), it follows that 

 (18) 

From Equations (14) and (7) follows 

Then 

 

Replacing in Equation (18), it follows: 
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Then 

 

This proves one of the three proposed equalities. The other two are 

analogous. 

Theorem 2 - (The Law of Sines) - Let be a spherical triangle of vertices A, B 

and C, with internal angles measuring ,  and  whose opposite sides measure 

a, b and c, respectively. So:  

 

Proof: 

From Equations (9) and (17), it follows that 

 

and 

 

where sin( )≠0, since 0°< <180°. Thereby 

 (19) 

From Equations (7) and (15), it follows: 

 

and 

 

where sin ( ) ≠ 0, since 0° <  < 180°. Thereby 

 (20) 

From Equations (19) and (20), we can conclude 
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Which implies 

 

This proves one of the equalities. The others are obtained in an analogous 

way. 

Theorem 3 - (Law of Cosines - Part 2) - Let be a spherical triangle of vertices A, B and C, 

with internal angles measuring ,  and  whose opposite sides measure a, b and c, 

respectively. So: 

 

Proof: 

Once 𝛼 +  𝛽 =  𝑎, from Equations (11), it follows that 

 

Using the expression (38) from Appendix A: 

 (21) 

From Equations (16) and (9) follows 𝑀𝑃 =  𝐴𝑀. cos ( ) 𝑎𝑛𝑑 𝐴𝑀 =  𝑂𝐴. sin (𝑐), in 

other words: 

 (22) 

From Equations (12) and (6) follows 𝑂𝑁 =  𝑂𝑃. cos (𝛽) 𝑎𝑛𝑑 𝑂𝑁 =  𝑂𝐴. cos (𝑏), in 

other words: 

 (23) 
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From Equations (14) and (7) follows 𝑁𝑃 =  𝐴𝑁. cos ( ) 𝑎𝑛𝑑 𝐴𝑁 =  𝑂𝐴. sin (𝑏), in 

other words: 

 

Meantime from Equation (13), follows 𝑁𝑃 =  𝑂𝑃. sin (𝛽), so: 

 (24) 

Replacing Equations (22), (23) and (24) in the Equation (21), it follows that 

 

Implying that 

 

This proves one of the equalities. The others are obtained in an analogous 

way. 

Theorem 4 - (Cotangent Formulas) - Let be a spherical triangle of vertices A, 

B and C, with internal angles measuring ,  and  whose opposite sides measure 

a, b and c, respectively. So: 

 

Proof:  

Starting from Theorem 3, consider the formula: 

 (25) 

Dividing the Equation (25) by sin (𝑐): 

 

 

(26) 
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From Theorem 2, it follows that 

 (27) 

Replacing the Equation (27) in the (26) it follows that 

 

The other equations are shown analogously, starting from the other formulas 

of Theorem 3. 

Now, once we have proved these important theorems of spherical geometry 

and trigonometry, we are able to investigate the relations between coordinate 

systems in the celestial sphere, which we now define and describe. 

3 COORDINATE SYSTEMS IN THE CELESTIAL SPHERE 

The idea of the celestial sphere comes from ancient Greek astronomers, who 

conjectured that the star-encrusted sky was a large sphere, in which the Earth 

would be enveloped. From this conjecture, the concept of the celestial sphere arose. 

The celestial sphere is a gigantic imaginary sphere, centered on Earth, 

rotating around the extension of the Earth’s axis of  rotation, as shown in Figure 3. 

Despite the representation illustrated in Figure 3, it is important to mention that in 

this representation the Earth is dimensionless. The north celestial pole (PN) is the 

point at which the extension of the Earth’s axis of rotation intersects  the celestial 

sphere in the northern hemisphere. Similarly, the south celestial pole (PS) is the 

point at which the extension of the Earth’s axis of rotation intersects the celestial 

sphere in the southern hemisphere. The celestial equator is the great circle in 

which the plane of the Earth’s equator intersects the celestial sphere.  
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Figure 3 - The celestial sphere in blue and Earth in brown. The image also illustrates the 

two poles as well as the celestial equator 

 

Source: Authors (2021) 

Consider a straight line passing simultaneously through the center of the 

celestial sphere and the location of an observer on the Earth’s surface. This line is 

called the observer’s vertical (or vertical of the place). This line intersects the 

celestial sphere at two diametrically opposite points. These points are called Zenith 

(𝑍) and Nadir (𝑁∗), the first is the point located above the observer and the second 

is the point located below. We define the observer’s horizon as the plane tangent 

to the Earth and perpendicular to the aforementioned line, as shown in the Figure 4. 

Due to the gigantic dimensions of the celestial sphere, the observer can also 

be considered its center. In this abstract concept of the celestial sphere, we can 

consider that the stars lie on the spherical surface. Depending on the observer’s 

location on Earth, some stars can be seen crossing the horizon in an East (E) to 

West (W) motion. Other stars move in the same direction, but without ever crossing 

the horizon. This movement is called apparent motion. See Figure 4.  
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Figure 4 - The celestial sphere, the observer’s horizon and the apparent motion of a star 

 

Source: Authors (2021) 

In practice, for calculations, the radius of the celestial sphere is often 

considered unitary. 

The great circles whose planes contain the two celestial poles are called 

celestial meridians, as shown in Figure 5 (a). The local meridian is the celestial 

meridian that also passes through the observer’s zenith, as shown in Figure 5 (b).  

Figure 5 - (a) shows a meridian representation, which are the great circles whose planes 

contain the two celestial poles; on the other hand (b) shows the local meridian, which 

is the meridian that also passes through the observer’s zenith 

 

Source: Authors (2021) 
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Circles of the celestial sphere parallel to the horizon are called circles of 

altitude. A vertical circle is any great semicircle of the celestial sphere whose plane 

contains the vertical of the place. Vertical circles begin at the Zenith and end at the 

Nadir, as shown in Figure 6. 

Figure 6 - Representation of altitude circles and vertical circles. As a reference, the figure 

shows the observer’s horizon and the Zenith and Nadir points 

 

Source: Authors (2021) 

With the above definitions, we now introduce three coordinate systems 

commonly used to locate objects on the celestial sphere: horizontal, equatorial and 

hourly coordinate systems. 

3.1 Horizontal Coordinates 

This system uses the observer’s horizon plane as a reference. We will present 

below the coordinates of this system. 

(Altitude) - Altitude is the arc measured over the vertical circle of the star P 

starting at the horizon and ending at the star. It is denoted by the letter h and 

measured between −90° and 90°. 
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In Figure 7, the altitude of a point P in the celestial sphere is represented by 

the arc . 

−90° ≤ ℎ ≤ 90° 

Figure 7 - Illustration of the horizontal coordinate system of an observer’s frame of 

reference. The Altitude and Azimuth coordinates are represented in the southern 

hemisphere. To aid interpretation, the figure illustrates the Earth in brown and the 

celestial sphere in blue separately 

 

Source: Authors (2021) 

(Zenith Distance) - The altitude complement is called the zenith distance, 

that is, the measure of the arc over the vertical circle starting at the Zenith and 

ending at the star. It is denoted by the letter z and measured between 0° and 180°. 

Thereby: 

ℎ + 𝓏 = 90° 

and 

0° ≤ 𝓏 ≤ 360° 

(Azimuth) - The arc measured over the horizon from the north point to the 

vertical circle of the star is called the azimuth. Denoted by the letter A, the azimuth 
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varies between 0° and 360°, measured positively towards West (counterclockwise 

in the northern hemisphere, clockwise in the southern hemisphere). 

In Figure 7, the azimuth A of a point P in the celestial sphere is represented 

by the arc . 

0° ≤ 𝐴 ≤ 360° 

The horizontal system is a local system, as the coordinates of any star depend 

on the observer’s location and on the local time. 

3.2 Equatorial Coordinates 

This system uses the celestial equator as a reference plane. Thus, their 

coordinates do not depend on the observer’s position on the  terrestrial globe. To 

present the coordinates of this system, we should first establish some concepts.  

The circle in the celestial sphere formed by the apparent motion of the Sun 

in the frame of the Earth is called ecliptic. The ecliptic intersects with the celestial 

equator at two points: Aries point and Libra point. The Aries point is a point on the 

celestial equator occupied by the Sun at the March equinox, that is, when the Sun 

crosses the equator from the southern hemisphere and is denoted by 𝛾. The Libra 

point is the point diametrically opposed to the Aries Point. It is the point occupied 

by the Sun at the September equinox, that is, when the Sun crosses the equator 

from the northern hemisphere and is denoted by Ω. 

We can now introduce the coordinates of the equatorial system: 

(Right ascension) - Right ascension is the arc measured over the celestial 

equator, starting at the meridian that passes through the Aries point and ending at 

the star’s meridian. Denoted by 𝛼, it varies between 0° and 360°, measured 

eastward. 

Check out Figure 8: 

 0° ≤ 𝛼 ≤ 360° 
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It is also common for the right ascension coordinate to be measured in hours: 

0ℎ ≤  𝛼 ≤  24ℎ. 

Figure 8 - Illustration of the equatorial coordinate system of the Earth’s reference frame. 

The Right Ascension and Declination coordinates are represented (with orientations). 

To aid interpretation, the figure illustrates the Earth in brown and the celestial sphere 

in blue separately 

 

Source: Authors (2021) 

(Declination) - Declination is the arc measured over the star’s meridian, 

starting at the celestial equator and ending at the star. It is denoted by 𝛿 and 

measured between −90° and 90°. 

See Figure 8: 

−90° ≤  𝛿 ≤  90° 

(Polar Distance) - The complement of the declination is called the polar 

distance, that is, the arc over the meridian of the star, starting at the North Pole 

and ending at the star. It is denoted by Δ and measured between 0° and 180°.  

Thereby: 

𝛿 +  ∆ =  90° 

and 

0° ≤  ∆ ≤ 180° 



20 | Detailed demonstrations of the relations between coordinate systems in the celestial sphere 

 

 

Ci. e Nat., Santa Maria, v.44, e33, 2022 

The coordinates of a star represented in the equatorial system do not 

depend on the place and time of observation. 

3.3 Hourly Coordinates 

The hourly coordinate system, like the equatorial system, has the plane of 

the equator as its fundamental plane. Below, we present the coordinates of this 

system. 

(Declination) - The declination is the same as defined for equatorial 

coordinates. 

Check out Figure 9, the arc represents the declination of the star P: 

−90° ≤  𝛿 ≤  90° 

(Hour Angle) - Hour angle is the measure of the arc along the equator 

measured between the star’s meridian and the local meridian. Denoted by H, it 

ranges from 0° to 360° counted positively towards West. 

In Figure 9, the arc  represents the hour angle of the star P: 

0° ≤  𝐻 ≤  360° 
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Figure 9 - Illustration of the hourly coordinate system. The Hour Angle and Declination 

coordinates are represented (with orientations) 

 

Source: Authors (2021) 

It is also common for the hour angle to be measured in hours: 0ℎ ≤  𝐻 ≤  24ℎ. 

The coordinates of a star represented in the hourly system are insensitive to 

place and time of observation, just as in the equatorial system. 

4 COORDINATES IN THE TERRESTRIAL SPHERE - GEOGRAPHICAL 

COORDINATES 

We now review the spherical system of geographic coordinates. In this 

system the Earth is assumed to present a perfecly spherical geometry. Great circles 

that pass through the geographical poles are called terrestrial meridians. This 

allows us to define the Geographic Longitude and Latitude as follows: 

(Geographic Longitude) - The meridian that passes through Greenwich (city 

in south-east London, England) is called the Greenwich Meridian. Longitude is an 

arc measured along the geographic equator between the Greenwich and the local 



22 | Detailed demonstrations of the relations between coordinate systems in the celestial sphere 

 

 

Ci. e Nat., Santa Maria, v.44, e33, 2022 

meridians. It is denoted by 𝜆 and measured in degrees, from zero to 180° to East 

or West, starting from the Greenwich Meridian. 

In practice, a negative sign is used to indicate the W position and a positive 

sign for the E position. Thus, it is possible to write 

−180°(𝑊) ≤  𝜆 ≤  180°(𝐸) 

(Geographic Latitude) - Geographic latitude is the arc of the meridian, 

measured in degrees, from a point to the terrestrial equator. Latitude is denoted 

by ∅ and is measured from zero to 90° to the north or south of the terrestrial 

equator. 

In practice, a negative sign is used to indicate the S position and a positive 

sign for the N position. Thus, it is possible to write 

−90°(𝑆) ≤  𝜙 ≤  90°(𝑁) 

5 CONNECTIONS BETWEEN COORDINATES IN THE CELESTIAL 

SPHERE 

In this section, we will establish some connections between the coordinates 

of the different systems presented previously (Zenith Distance, Hour Angle, 

Azimuth, Declination and Geographic Latitude). The deductions below are well 

known in astronomy. However, we present here all mathematical steps in detail, 

what is not common in the literature. 

We will define, first of all, the concept of an astronomical position triangle. It 

is called astronomical position triangle of a certain star, the triangle located in the 

celestial sphere whose vertices are the star, the observer’s zenith and the elevated 

pole (the pole located above the horizon). 

It is necessary to note that, as the positions of the observer and the observed 

star vary, the ways of measuring the sides of the astronomical position triangle are 

altered. This occurs since the geographic latitude of the observer 𝜙 is positive when 

the observer is in the northern hemisphere and negative when he (or she) is in the 
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southern hemisphere; likewise, the declination of the star δ is  positive when the 

star is in the northern hemisphere and is negative when the star is in the southern 

hemisphere. As shown in Figure 10, there are four cases to consider:: “𝜙 > 0 and 

𝛿 > 0”, “𝜙 <  0 and 𝛿 <  0”, “𝜙  <  0 and 𝛿 >  0” and “𝜙  >  0 and 𝛿 <  0”. 

Figure 10 - Examples of the four possibilities of astronomical position triangles varying 

𝜙 and δ  

 

Source: Authors (2021) 

In the first case, when 𝜙  >  0and 𝛿 >  0, we have: 

• The arc between the zenith and the pole measures 90° − 𝜙; 

• The arc between the pole and the star measures 90° − δ. 

In the second case, when 𝜙 < 0 and 𝛿 < 0, we have: 

• The arc between the zenith and the pole measures 90° − | 𝜙 | (or 90° + 𝜙); 

• The arc between the pole and the star measures 90° − |𝛿| (or 90° + δ). 
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In the third case, when 𝜙 < 0 and 𝛿 > 0, we have: 

• The arc between the zenith and the pole measures 90◦ − | 𝜙 | (or 90° + 𝜙); 

• The arc between the pole and the star measures 90° + 𝛿. 

In the fourth case, when 𝜙 > 0 and 𝛿 < 0, we have: 

• The arc between the zenith and the pole measures 90° − 𝜙; 

• The arc between the pole and the star measures 90° + |𝛿| (or 90° − 𝛿). 

Furthermore, 

• The arc between the zenith and the star is the star’s zenith distance z;  

• The angle with vertex in the zenith measures the azimuth A of the star when 

in the northern hemisphere, when the zenith is in the southern hemisphere 

this angle measures A – 180°; 

• The angle with vertex at the pole measures the hourly angle H of the star;  

• The angle with a vertex in the star is called the paralactic angle.  

Although there are four distinct cases, we have the following theorem: 

Theorem 5. The zenith distance 𝓏 , the hour angle H, the azimuth A, the 

declination 𝛿  and the geographic latitude 𝜙  are governed according to the 

following formulas, regardless of the hemisphere: 

 (28) 

 (29) 

 (30) 

 (31) 

 (32) 

In addition, when the observer is in the northern hemisphere: 

 (33) 

 (34) 

Furthermore, when the observer is in the southern hemisphere: 
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 (35) 

 (36) 

Proof: Indeed, 

First case: 𝜙 >  0 𝑒 𝛿 >  0 

Consider point M the star, point P the north celestial pole and point Z the 

zenith, as shown in Figure 11. It is known that z is the zenith distance, A is the 

azimuth and H is the hourly angle of the star. 

Figure 11 - Astronomical position triangle where 𝜙 >  0 𝑎𝑛𝑑 𝛿 >  0 

 

Source: Authors (2021) 

From Theorem 1, applied to the astronomical position triangle ZMP, it is 

observed: 

 

Using the expressions (40) and (42) from Appendix A, it follows that 

 

Which proves the Equation (28) for the first case. 

Applying once again Theorem 1 to the ZMP astronomical position triangle, it 

is observed in an analogous way that: 
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Using the expressions (40) and (42) from Appendix A, it follows: 

 

Which proves the Equation (29) for the first case. 

From Theorem 4: 

 

Using the expressions (40), (42) and (45) from Appendix A, it follows: 

 

Which proves the Equation (30) for the first case. 

From Theorem 3, we have 

 

Using the expressions (40) and (42) from Appendix A, it follows: 

 

Which proves the Equation (31) for the first case. 

Once again, from Theorem 3, it follows that 

 

Using the expressions (40) and (42) from Appendix A, it follows that 

 

Which proves the Equation (32) for the first case. 

From Theorem 2, applied to the ZMP astronomical position triangle, follows:  

 

Using the expression (40) from Appendix A, it follows: 

 

In other words 
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Which proves the Equation (33) for the first case.  

From Theorem 4: 

 

Using the expressions (40) and (42) from Appendix A, it follows that 

 

Which proves the Equation (34) for the first case. 

Second case: 𝜙 <  0 e 𝛿 <  0 

Consider point M the star, point P the south celestial pole and point Z the 

zenith, as shown in Figure 12. It is known that z is the zenith distance, A is the 

azimuth and H is the hourly angle of the star 

Figure 12 - Astronomical position triangle where ∅< 0 and δ < 0 

 

Source: Authors (2021) 

From Theorem 1, applied to the astronomical position triangle ZMP, it is 

observed: 

 

Using the expressions (43) and (41) from Appendix A, it follows that 
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Implying 

 

Which proves the Equation (28) for the second case. 

Applying once again Theorem 1 to the triangle of astronomical position ZMP, 

it is observed in an analogous way that 

 

Using the expressions (39), (41), (43) and (47) from Appendix A, it follows that 

 

Implying 

 

In other words 

 

Which proves the Equation (29) for the second case. 

From Theorem 4, we have 

 

Using the expressions (41), (43), (44) and (46) from Appendix A, it follows that 

 

Implying 

 

Which proves the Equation (30) for the second case. 

From Theorem 3, we have 

 

Using the expressions (41), (43) and (47) from Appendix A, it follows: 

 

Implying 
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Which proves the Equation (31) for the second case. 

Over again, from Theorem 3, we have: 

 

Using the expressions (41), (43) and (47) from Appendix A, it follows: 

 

Which proves the Equation (32) for the second case. 

From Theorem 2, applied to the ZMP astronomical position triangle, it follows 

that 

 

Using the expressions (41) and (48) from Appendix A, it follows: 

 

In other words 

 

Which proves the Equation (35) for the second case. 

Again, from Theorem 4: 

 

Using the expressions (41), (43), (47) and (48) from Appendix A, it follows that 

 

Implying 

 

Which proves the Equation (36) for the second case. 

Third case: 𝜙 <  0 e 𝛿 >  0 

Consider point M the star, point P the south celestial pole and point Z the 

zenith, as shown in Figure 13. It is known that z is the zenith distance, A is the 

azimuth and H is the hourly angle of the star. 
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Figure 13 - Astronomical position triangle where 𝜙 <  0 and 𝛿 >  0 

 

Source: Authors (2021) 

From Theorem 1, applied to the astronomical position triangle ZMP, it is 

observed: 

 

Using the expressions (41) and (43) from Appendix A, it follows that 

 

In other words 

 

Which proves the Equation (28) for the third case. 

Applying once again Theorem 1 to the ZMP astronomical position triangle, it 

is observed in an analogous way that: 

 

Using the expressions (41), (43) and (47) from Appendix A, it follows: 

 

Implying 
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In other words 

 

Which proves the Equation (29) for the third case. 

From Theorem 4 

 

Using the expressions (41), (43), (44) and (46) from Appendix A, it follows that 

 

Implying 

 

Which proves the Equation (30) for the third case. 

From Theorem 3 

 

Using the expressions (41), (43) and (47) from Appendix A, it follows that 

 

Implying 

 

Which proves the Equation (31) for the third case. 

Again, from Theorem 3, we have: 

 

Using the expressions (41), (43) and (47) from Appendix A, it follows that 

 

Which proves the Equation (32) for the third case. 

From Theorem 2, applied to the ZMP astronomical position triangle, it follows 

that 
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Using the expressions (41) and (48) from Appendix A, it follows that 

 

In other words 

 

Which proves the Equation (35) for the third case. 

Once again, from Theorem 4, we have: 

 

Using the expressions (41), (43), (47) and (48) from Appendix A, it follows that 

 

Implying 

 

Which proves the Equation (36) for the third case. 

Fourth case 𝜙 >  0 e 𝛿 <  0 

Consider point M the star, point P the north celestial pole and point Z the 

zenith, as shown in Figure 14. It is known that z is the zenith distance, A is the 

azimuth and H is the hourly angle of the star. 

Figure 14 - Astronomical position triangle where 𝜙 >  0 and 𝛿 <  0 

 

Source: Authors (2021) 
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From Theorem 1, applied to the ZMP astronomical position triangle, it is 

observed: 

 

Using the expressions (40) and (42) from Appendix A, it follows that 

 

Which proves the Equation (28) for the fourth case. 

Once again applying Theorem 1 to the ZMP astronomical position triangle, it 

is observed that: 

 

Using the expressions (40) and (42) from Appendix A, it follows that 

 

Which proves the Equation (29) for the fourth case. 

From Theorem 4, we have 

 

Using the expressions (40), (42) and (45) from Appendix A, it follows: 

 

Which proves the Equation (30) for the fourth case. 

From Theorem 3, we have: 

 

Using the expressions (40) and (42) from Appendix A, it follows that 

 

Which proves the Equation (31) for the fourth case. 

Once again, from Theorem 3, it follows: 

 

Using the expressions (40) and (42) from Appendix A, it follows: 

 

Which proves the Equation (32) for the fourth case. 
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From Theorem 2, applied to the ZMP astronomical position triangle, it follows 

that 

 

Using the expression (40) from Appendix A, it follows: 

 

In other words 

 

Which proves the Equation (33) for the fourth case. 

Again, from Theorem 4: 

 

Using the expressions (40) and (42) from Appendix A, it follows: 

 

Which proves the Equation (34) for the fourth case. 

6 FINAL REMARKS 

The wide applicability of spherical geometry and trigonometry in astronomy, 

geodesy, navigation and other areas, justifies the importance of studying this 

subject. Despite being a theme studied for many decades, there is always 

something to add or approach differently. 

Concerning Positional Astronomy, in this article some formulas have been 

presented that exhibit connections between coordinates in the celestial sphere. 

Seven formulas were presented connecting the coordinates Zenith Distance, Hour 

Angle, Azimuth, Declination and Geographic Latitude. Five of these formulas are 

independent of the observer’s position and two of  them vary slightly according to 

the hemisphere in which the observer is located. Such formulas are important 
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because they allow the analytical study of the apparent motion of stars in the 

celestial sphere. In addition to displaying these formulas, which are not common 

in Positional Astronomy texts, we did the detailed proofs for each one. In order to 

prove them, we consider four cases, depending on the geographic latitude 𝜙 and 

the declination of the star of interest δ. In this way, we make one more small  

contribution for those who want to learn this beautiful geometry.  

APPENDIX A - WELL-KNOWN TRIGONOMETRIC IDENTITIES FOR 

PLANE GEOMETRY 

This Appendix presents some well-known trigonometric identities for plane 

geometry. Such equalities will be constantly requested throughout the text of this 

study 

 (37) 

 (38) 

 (39) 

 (40) 

 (41) 

 (42) 

 (43) 

 (44) 

 (45) 

 (46) 

 (47) 

 (48) 
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