
 
  

ISSN 2179-460X

 
 

Ci. e Nat., Santa Maria, v. 43, e7, 2021  •  https://doi.org/10.5902/2179460X42826 
Submitted: 12/03/2020  •  Accepted: 21/04/2021  •  Published: 30/ 01/ 2021 

 

 
Published by Ciência e Natura under a CC BY-NC-SA 4.0 license. 

 

Meteorology 

Multiple solutions, multi-site, and parameter transfer to 
calibrate DHSVM hydrological model 

Roberto Avelino Cecílio I , Helder de Amorim Mendes II ,  
    Sidney Sara Zanetti I  

I Universidade Federal do Espírito Santo, Jerônimo Monteiro, ES, Brazil 
II Universidade Federal do Espírito Santo, Alegre, ES, Brazil  

ABSTRACT 

The application of hydrologic models often needs sets of input parameters related to environmental 
attributes which are not always available. This leads to the necessity of calibrating the input parameters. 
However, due to the non-linearity of the hydrologic phenomena, there may be multiple “best” solutions 
for the calibration. This paper proposes a method for calibrating the DHSVM hydrologic model using the 
concepts of multiple solutions, multi-site, and parameter transfer among catchments. Eight watersheds 
were calibrated, resulting in obtaining five sets of “best” parameters (clusters) for each one. Afterward, 
each watershed was modeled using the parameters of the other catchments in order to verify if the 
transfer of the calibrated parameters could promote satisfactory modeling of the streamflows. The 
results show that clusters calibrated for one watershed may be suitable for other catchments. Besdes, 
the calibrated parameters of the smaller catchments were satisfactory to simulate the streamflow of the 
bigger catchments. The proposed method can be useful in calibrating and extrapolating the input 
parameters to regions that do not have information about them 

Keywords: Streamflow; Heuristics; Clustering search 

1 INTRODUCTION 

Hydrological modeling in a key factor to achieve sustainable management of the 

environment, especially concerning to integrated water resources management. 

Hydrological models are widely used computational tools to simulate hydrological 

responses of watersheds to human activities or meteorological variability. The 

elements that cause changes in the hydrological regime may be very diverse, such as 
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changes in land use and management (HASSABALLAH et al., 2017; WOLDESENBET et al., 

2017), adoption of best management practices (LIU et al., 2017; POTT; FOHRER, 2017), 

and the effects of climate change (FARJAD et al., 2017; NGUYEN et al., 2017). 

Among the most complex hydrological models, the Distributed Hydrology Soil 

Vegetation Model (DHSVM) (WIGMOSTA; VAIL; LETTENMAIER, 1994) is a distributed 

model that divides the catchment into units in which simulations of climatic, vegetative 

and hydrological processes are performed through physical equations. The DHSVM has 

been successfully applied to simulate the hydrological behavior of watersheds in 

response to land use changes (ALVARENGA et al., 2016, 2017; CUARTAS et al., 2012; 

OLIVEIRA, 2014; THANAPAKPAWIN et al., 2007; WESTRICK; STORCK; MASS, 2002), and to 

climate change (BECKERS; SMERDON; WILSON, 2009; CUO; GIAMBELLUCA; ZIEGLER, 

2011; SHOURONG et al., 2002; SUN et al., 2016; ZHANG et al., 2018). 

The correct definition of the input parameters of a hydrological model, especially 

the DHSVM, is a key factor for hydrological modeling. Therefore, the success of 

hydrological modeling fundamentally depends on the quantification of the input 

parameter values of the model. However, a set of input parameters that provides good 

modeling is not always available (ARNOLD et al., 2015; MORIASI et al., 2015). When this 

information is not available, it is common to use data from literature or other studies 

of regions that have similar environmental characteristics (PINTO et al., 2013). However, 

although there is a similarity, the data does not always lead to satisfactory modeling 

(CECÍLIO et al., 2020). 

In such situations, it is essential to perform the calibration of the input 

parameters in order to obtain adequate results for the modeling (DAGGUPATI et al., 

2015; GUPTA; SOROOSHIAN; YAPO, 1999; YEN et al., 2015a). The calibration consists of 

varying the input parameter values of the model in order to obtain better adjustments 

in the modeling and can be performed manually or automatically (KAN et al., 2017). The 

manual process requires the researcher’s experience and tends to be challenging (YEN 

et al., 2015a), time-consuming, boring, and tedious. For complex models that require a 

large number of input parameters, it is common for one or more parameters to 
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influence the same model behavior, making the manual calibration process even more 

difficult. In this case, adjustment of the parameters becomes complex, since adjusting 

a given parameter may necessitate a new adjustment of a previously adjusted 

parameter (GUPTA; SOROOSHIAN; YAPO, 1999). The automatic process has become 

more common due to computational advances (ROUHOLAHNEJAD et al., 2012) with the 

application of several optimization techniques (KAN et al., 2017; TIGKAS; CHRISTELIS; 

TSAKIRIS, 2016) such as Genetic Algorithms (RESHMA et al., 2015; YAO; YANG, 2009) and 

Simulated Annealing (DAS et al., 2008; DATTA et al., 2017; SUMNER; MICK FLEMING; C. 

BATES, 1997), or even hybrid meta-heuristics (MENDES; CECÍLIO; ZANETTI, 2017). 

However, due to several reasons, even automatic calibration can lead to 

unsatisfactory modeling. For example, the calibrated values may not be physically 

consistent. In addition, a calibration can be very useful for a given set of input data 

(meteorological, for example) or a specific basin. However, when the same calibration 

is applied to another set of input data, or even to a catchment upstream of the basin, 

the obtained results may not be satisfactory (GUPTA; SOROOSHIAN; YAPO, 1999; MELO 

NETO et al., 2014).  

In order to minimize these problems, it is essential to find out and use new 

calibration techniques (ARSENAULT et al., 2014). As a premise of the present research, 

it is believed that the combination of three alternatives can provide better calibrations 

of hydrological models: existence of multiple optimal (or quasi-optimal) solutions 

(EASTON et al., 2007), multi-site calibration (BAI; SHEN; YAN, 2017; BRIGHENTI; BONUMÁ; 

CHAFFE, 2016) and the transfer of calibration parameters among catchments. 

The calibration of distributed hydrologic models such as DHSVM is based on the 

solution of non-linear problems, which generally leads to the existence of multiple 

combinations of calibrated parameters that provide optimal or quasi-optimal solutions 

(DUAN; SOROOSHIAN; GUPTA, 1992; EASTON et al., 2007). In the context of the 

existence of multiple solutions for calibration, (MENDES; CECÍLIO; ZANETTI, 2017) 

developed an automatic DHSVM calibrator based on the meta-heuristic Clustering 

Search (CS). This tool generates several different sets of optimal and quasi-optimal 
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calibrated parameters, called clusters. One of the generated clusters holds the best 

solution obtained during the calibration process, while the others present other quasi-

optimal solutions. 

For a large-scale watershed, single-site calibration and validation may ignore 

spatial heterogeneity and may not meet the needs of the entire watershed (BAI; SHEN; 

YAN, 2017). The multi-site method involves the division of the large watershed into 

smaller watersheds and applying the calibrated parameters of the multi-site calibration 

to the entire watershed (BAI; SHEN; YAN, 2017). Several authors have demonstrated the 

effectiveness of multi-site calibration over the single-site calibration centering solely on 

the data of the catchment outlet (BAI; SHEN; YAN, 2017; BRIGHENTI; BONUMÁ; CHAFFE, 

2016; MOLINA-NAVARRO et al., 2017; SHRESTHA et al., 2016; WANG et al., 2012). 

It is imperative to investigate the feasibility of not only using the calibrated 

parameters that provide the best solution for a basin, but also those that provide quasi-

optimal solutions. Moreover, it is feasible that such a procedure can be done for more 

than one catchment within the same basin. Besides, it is subsequently possible to 

transfer the different sets of calibrated parameters (optimal and quasi-optimal) to each 

catchment and to verify the efficiency of each set in the modeling of all the others. 

Therefore, the objective of this paper was to propose a method for calibrating the 

DHSVM hydrologic model using the concepts of multiple solutions, multi-site, and 

parameter transfer among catchments. 

2 MATERIAL AND METHODS 

A computational tool was implemented to calibrate many sets of input 

parameters to several watersheds of a specific basin. The sets of calibrated input 

parameters were then applied to all the watersheds intending to verify the DHSVM 

accuracy. The implemented steps and data are summarized in the flowchart in 

Figure1. 
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Figure 1 – Flowchart of the steps accomplished in this paper 

 

2.1 Basin application 

The areas understudy were the Itapemirim River Basin (IRB), and its 

watersheds (sub-basins) named Castelo, Fazenda Lajinha, Itaici, Iúna, Rive, Terra 

Corrida, Usina Paineiras, and Usina São Miguel (Figure 2). The information 

regarding the fluviometric stations at the mouth of each watershed is presented in 
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Table 1. The IRB is located in the southern region of Espírito Santo State (Figure 2), 

with an area of 6,014 km2. According to the Köppen classification, the predominant 

climatic types of the regions are “Cwa” – Humid Subtropical climate with dry winter 

and hot summer, and “Cwb” – Humid Subtropical climate with a dry winter and 

temperate summer (ALVARES et al., 2013). The vegetation is within the domains of 

the Atlantic Forest Biome with the following formations: Dense Ombrophilous 

Forest and Semi-deciduous Seasonal Forest (INSTITUTO BRASILEIRO DE 

GEOGRAFIA E ESTATÍSTICA, 2012). The relief is dominated by mountains, with 

higher elevations in the proximities of the western contour, which indicates 

suitability for applying the DHSVM (BECKERS; SMERDON; WILSON, 2009; SURFLEET; 

SKAUGSET; MCDONNELL, 2010). 

Figure 2 – Geographical location of the IRB and stream gauge stations 
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Table 1 – Stream gauge station locations and its watershed areas 

Station Latitude Longitude Altitude (m) Drainage area (Km2) 

Fazenda Lajinha (FLA) -20º25’ -41º16’ 400 436 

Iúna (IUN) -20º21’ -41º31’ 640 432 

Terra Corrida (TCO) -20º25’ -41º30’ 380 587 

Castelo (CAS) -20º36’ -41º11’ 107 975 

Itaici (ITA) -20º31’ -41º30’ 380 1045 

Usina São Miguel (USM) -20º42’ -41º10’ 200 1459 

Rive (RIV) -20º44’ -41º27’ 128 2218 

Usina Paineiras (UPA) -20º57’ -41º57’ 40 5168 

2.2 DHSVM database 

DHSVM is a physically based distributed hydrologic model that explicitly solves 

water and energy balances for each model grid cell. It accounts for the effects of climate, 

topography and land cover by explicitly representing the spatial distribution of soil 

properties, soil depth, vegetation properties, and elevation. DHSVM incorporates canopy 

precipitation interception, evapotranspiration, energy, and radiation balance, snow 

accumulation and melt, runoff generation through saturation excess and infiltration 

excess mechanisms, unsaturated soil moisture movement, saturated subsurface flow, 

and groundwater recharge and discharge (CUO et al., 2006). Briefly described, DHSVM 

calculates the spatial distribution of soil the moisture and hydrological elements 

(evapotranspiration, runoff, and streamflow) in time increments for each individual grid 

cells of the digital elevation model of the watershed. The water balance is calculated for 

each grid cell based on effects from vegetation, meteorological elements, soil properties, 

and relief. The model uses a two-layer canopy representation to calculate interception 

and evapotranspiration, a multilayer unsaturated soil model based on Darcy's Law, and 

a saturated subsurface flow model. Once the model completes the water balance 

calculations, each grid cell exchanges water with the adjacent grid cells, which results in 

a three-dimensional redistribution of surface and subsurface water across the watershed 

(SURFLEET; SKAUGSET; MCDONNELL, 2010). The multi-layer soil column in each pixel is a 
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series of soil moisture reservoirs, and saturated subsurface flow exists in the deepest soil 

layer. Saturation excess and infiltration excess mechanisms represent runoff generation. 

Stream segment storage volume is computed using linear-reservoir routing 

(THANAPAKPAWIN et al., 2007). A detailed description of DHSVM can be found in 

(WIGMOSTA et al., 2002; WIGMOSTA; VAIL; LETTENMAIER, 1994). 

Model parameters fall under meteorological, soil, vegetation (land cover), and 

topography categories. The model’s spatial framework is set by a digital elevation model 

(DEM) of user-defined resolution (pixel size). The DEM source was the Global Digital 

Elevation Model (GDEM2) from the Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER), with the spatial resolution previously established in 100 

m (MENDES, 2016). 

The daily meteorological information was obtained from meteorological and rain 

gauge stations inside and surrounding the IRB (Figure 3), accomplishing the period from 

2007 to 2011 (same period of the daily streamflow data). 

Figure 3 – Geographical location of the meteorological and rain gauge stations 
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Soil data and maps (Figure 4a) were obtained from the Brazilian Soils Map in the 

scale 1: 5,000,000 (EMBRAPA - EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA, 

2013; SANTOS et al., 2011), showing the occurrence of Oxisols, Interceptisols, and 

Ultisols. The land use map (Figure 4b) was obtained from the Espírito Santo State 

Environmental Institute (GEOBASES, 2012). There are eight main land use classes: 

pasture, agricultural crops, buildings, planted forests (pinus and eucalyptus), swamp, 

native forest, water bodies, and rocks. 

Figure 4 – Soil (a) and land use (b) maps of the Itapemirim River Basin 

 
 

There is currently a lack of information on the soil and vegetation parameters 

required for DHSVM application in Brazil, especially in the Atlantic Forest. Thus, in order 

to obtain the soil parameters, data were collected from previous studies about DHSVM 

application in Brazil (KRUK et al., 2009; OLIVEIRA, 2014). Oliveira (2014) carried out 

modeling of the Jucu River Basin located close to the IRB, and is relatively similar in soil, 

climate and land use characteristics. Thus, vegetation and soil initial parameters, except 

maximum soil depth, were taken from this study. Soil maximum depth was set in 30 m, 

according to a previous IRB study (MENDES, 2016). 
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2.3 Calibration of input parameters to each watershed 

Each of the eight watersheds was calibrated using a tool based on CS 

heuristics (MENDES; CECÍLIO; ZANETTI, 2017). The calibrated parameters were 

those presented in Table 2 and the calibrator was set to save five different “best” 

solutions (clusters). Thus, the five “best” calibrated parameter sets were obtained 

for each watershed at the end of the calibration, totaling 40 solution files. 

Table 2 – Soil input parameters taken at DHSVM calibration (Kls is the Lateral saturated 

hydraulic conductivity; EDR is the Exponential decrease rate of lateral saturated 

hydraulic conductivity; MIC is the Maximum infiltration capacity; and P is the  Porosity 

of the soil layers) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Soil Input parameter Initial value Lower value Upper value 

Interceptisol 

Kls (x10-5 m s-1) 2.17 1.00 9.00 

EDR (dimensionless) 0.23 0.05 0.50 

MIC (x10-7 m s-1) 4.0 3.0 9.0 

P (m3 m-3) - 1st layer 0.52 0.31 0.60 

P (m3 m-3) – 2nd layer 0.54 0.33 0.60 

P (m3 m-3) – 3rd layer 0.55 0.31 0.60 

Oxisol 

Kls (x10-5 m s-1) 2.71 1.00 9.00 

EDR (dimensionless) 0.14 0.05 0.50 

MIC (x10-7 m s-1) 5.0 3.0 9.0 

P (m3 m-3) - 1st layer 0.54 0.31 0.60 

P (m3 m-3) – 2nd layer 0.53 0.31 0.60 

P (m3 m-3) – 3rd layer 0.51 0.31 0.60 

Ultisol 

Kls (x10-5 m s-1) 2.46 1.00 9.00 

EDR (dimensionless) 0.33 0.05 0.50 

MIC (x10-7 m s-1) 5.0 3.0 9.0 

P (m3 m-3) - 1st layer 0.48 0.31 0.60 

P (m3 m-3) – 2nd layer 0.47 0.31 0.60 

P (m3 m-3) – 3rd layer 0.47 0.31 0.60 
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The calibration was set to maximize Nash-Sutcliffe efficiency (NS) (NASH; 

SUTCLIFFE, 1970) and minimize the percentage of bias (PBIAS) (MORIASI et al., 2007), 

presented in equations 1 and 2, respectively: 

 (1) 

 

 (2) 

 

where Qobsi is the observed streamflow; Qsimi is the simulated streamflow; n 

is the number of observations; and 
obs
meanQ  is the average observed streamflow.  

The efficiency of the modeling on a daily basis was taken as satisfactory when 

NS ≥ 0.30 (NOORI; KALIN, 2016) and -25% ≤ BIAS ≤ 25% (MORIASI et al., 2007). 

2.4 Transfer of calibrated parameters sets among watersheds 

The transfer of the solutions obtained with each calibration was performed 

for all watersheds. DHSVM was applied to each watershed using all the 35 solutions 

(set of parameters) obtained for the other seven watersheds. The NS and PBIAS of 

each transfer were also calculated. 

3 RESULTS 

The results are presented considering three groups of watersheds: Group I, 

upstream of the Rive station (IUN, TCO, ITA, and RIV); Group II, upstream of the 

Usina São Miguel station (FLA, CAS, and USM); and Group III, the only station further 

downstream of IRB (UPA). 
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3.1 Calibration of each watershed 

Tables 3 to 5 present the five best sets of calibrated parameters (clusters) for 

each watershed, and its respective NS and PBIAS indexes. 

Table 3 – Calibrated parameters and performance indexes for the five clusters of each 

watershed upstream from RIV station 

Basin Cluster Parameter Ultisol Oxisol Interceptisol NS PBIAS (%) 

IUN 

IUN10 

Kls (x10-5 m s-1) - 5.11 4.57 

0.41 15 
EDR (dimensionless) - 0.34 0.43 
MIC (x10-7 m s-1) - 8.47 8.63 
P (m3 m-3) - 1st layer - 0.59 0.47 
P (m3 m-3) – 2nd layer - 0.58 0.59 
P (m3 m-3) – 3rd layer - 0.46 0.60 

IUN2 

Kls (x10-5 m s-1) - 4.81 4.87 

0.39 17 

EDR (dimensionless) - 0.34 0.33 
MIC (x10-7 m s-1) - 8.47 8.63 
P (m3 m-3) - 1st layer - 0.54 0.42 
P (m3 m-3) – 2nd layer - 0.58 0.59 
P (m3 m-3) – 3rd layer - 0.46 0.60 

IUN3 

Kls (x10-5 m s-1) - 4.81 4.57 

0.38 18 

EDR (dimensionless) - 0.34 0.23 
MIC (x10-7 m s-1) - 8.47 8.63 
P (m3 m-3) - 1st layer - 0.59 0.42 
P (m3 m-3) – 2nd layer - 0.58 0.59 
P (m3 m-3) – 3rd layer - 0.46 0.60 

 

IUN4 

Kls (x10-5 m s-1) - 4.81 4.27 

0.38 18 

EDR (dimensionless) - 0.34 0.23 
MIC (x10-7 m s-1) - 8.47 8.63 
P (m3 m-3) - 1st layer - 0.59 0.42 
P (m3 m-3) – 2nd layer - 0.58 0.59 
P (m3 m-3) – 3rd layer - 0.46 0.60 

IUN5 

Kls (x10-5 m s-1) - 3.91 4.27 

0.49 9 

EDR (dimensionless) - 0.34 0.43 
MIC (x10-7 m s-1) - 8.47 8.63 
P (m3 m-3) - 1st layer - 0.59 0.47 
P (m3 m-3) – 2nd layer - 0.58 0.54 
P (m3 m-3) – 3rd layer - 0.46 0.45 

 

 

Continuation... 
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Table 3 - Continuation... 
Basin Cluster Parameter Ultisol Oxisol Interceptisol NS PBIAS (%) 

TCO 

TCO1 

Kls (x10-5 m s-1) - 8.71 3.36 

0.54 7 

EDR (dimensionless) - 0.44 0.33 
MIC (x10-7 m s-1) - 8.47 8.63 
P (m3 m-3) - 1st layer - 0.59 0.58 
P (m3 m-3) – 2nd layer - 0.48 0.57 
P (m3 m-3) – 3rd layer - 0.56 0.42 

TCO2 

Kls (x10-5 m s-1) - 8.71 4.26 

0.53 13 

EDR (dimensionless) - 0.24 0.43 
MIC (x10-7 m s-1) - 8.47 8.63 
P (m3 m-3) - 1st layer - 0.54 0.58 
P (m3 m-3) – 2nd layer - 0.58 0.57 
P (m3 m-3) – 3rd layer - 0.56 0.42 

TCO3 

Kls (x10-5 m s-1) - 8.71 3.96 

0.50 9 

EDR (dimensionless) - 0.34 0.43 
MIC (x10-7 m s-1) - 8.47 8.63 
P (m3 m-3) - 1st layer - 0.54 0.58 
P (m3 m-3) – 2nd layer - 0.48 0.57 
P (m3 m-3) – 3rd layer - 0.56 0.47 

TCO4 

Kls (x10-5 m s-1) - 8.71 3.36 

0.54 7 

EDR (dimensionless) - 0.44 0.43 
MIC (x10-7 m s-1) - 8.47 8.63 
P (m3 m-3) - 1st layer - 0.54 0.58 
P (m3 m-3) – 2nd layer - 0.53 0.57 
P (m3 m-3) – 3rd layer - 0.56 0.42 

TCO5 

Kls (x10-5 m s-1) - 8.71 3.36 

0.54 7 

EDR (dimensionless) - 0.44 0.43 
MIC (x10-7 m s-1) - 8.47 8.63 
P (m3 m-3) - 1st layer - 0.59 0.58 
P (m3 m-3) – 2nd layer - 0.48 0.57 
P (m3 m-3) – 3rd layer - 0.56 0.42 

ITA 

ITA1 

Kls (x10-5 m s-1) 2.76 5..11 1..57 

0.49 6 

EDR (dimensionless) 0.43 0..14 0..43 
MIC (x10-7 m s-1) 6.74 8..47 8..63 
P (m3 m-3) - 1st layer 0.52 0..59 0..52 
P (m3 m-3) – 2nd layer 0.59 0..48 0..54 
P (m3 m-3) – 3rd layer 0.48 0..56 0..55 

ITA2 

Kls (x10-5 m s-1) 3.36 5..11 2..17 

0.44 9 

EDR (dimensionless) 0.33 0..14 0..43 
MIC (x10-7 m s-1) 7.90 8.47 8.63 
P (m3 m-3) - 1st layer 0.47 0.59 0.52 
P (m3 m-3) – 2nd layer 0.54 0.48 0.59 
P (m3 m-3) – 3rd layer 0.48 0.56 0.60 

 

 

 

Continuation... 
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Table 3 - Concluson... 
Basin Cluster Parameter Ultisol Oxisol Interceptisol NS PBIAS (%) 

 

ITA3 

Kls (x10-5 m s-1) 3.06 5.11 2.17 

0.45 9 

EDR (dimensionless) 0.33 0.14 0.43 
MIC (x10-7 m s-1) 7.32 8.47 8.63 
P (m3 m-3) - 1st layer 0.52 0.59 0.52 
P (m3 m-3) – 2nd layer 0.54 0.48 0.59 
P (m3 m-3) – 3rd layer 0.43 0.56 0.60 

ITA4 

Kls (x10-5 m s-1) 3.06 5.11 2.17 

0.46 9 

EDR (dimensionless) 0.33 0.14 0.43 
MIC (x10-7 m s-1) 7.32 8.47 8.63 
P (m3 m-3) - 1st layer 0.52 0.59 0.52 
P (m3 m-3) – 2nd layer 0.54 0.48 0.54 
P (m3 m-3) – 3rd layer 0.43 0.56 0.60 

ITA5 

Kls (x10-5 m s-1) 3.66 5.41 1.87 

0.51 10 

EDR (dimensionless) 0.43 0.24 0.43 
MIC (x10-7 m s-1) 8.47 8.47 8.63 
P (m3 m-3) - 1st layer 0.57 0.54 0.52 
P (m3 m-3) – 2nd layer 0.54 0.53 0.59 
P (m3 m-3) – 3rd layer 0.38 0.56 0.55 

RIV 

RIV1 

Kls (x10-5 m s-1) 2.76 5.11 1.57 

0.56 14 

EDR (dimensionless) 0.43 0.14 0.43 
MIC (x10-7 m s-1) 6.74 8.47 8.63 
P (m3 m-3) - 1st layer 0.52 0.59 0.52 
P (m3 m-3) – 2nd layer 0.59 0.48 0.54 
P (m3 m-3) – 3rd layer 0.48 0.56 0.55 

RIV2 

Kls (x10-5 m s-1) 3.36 5.11 2.17 

0.45 7 

EDR (dimensionless) 0.33 0.14 0.43 
MIC (x10-7 m s-1) 7.90 8.47 8.63 
P (m3 m-3) - 1st layer 0.47 0.59 0.52 
P (m3 m-3) – 2nd layer 0.54 0.48 0.59 
P (m3 m-3) – 3rd layer 0.48 0.56 0.60 

RIV3 

Kls (x10-5 m s-1) 3.06 5.11 2.17 

0.45 7 

EDR (dimensionless) 0.33 0.14 0.43 
MIC (x10-7 m s-1) 7.32 8.47 8.63 
P (m3 m-3) - 1st layer 0.52 0.59 0.52 
P (m3 m-3) – 2nd layer 0.54 0.48 0.59 
P (m3 m-3) – 3rd layer 0.43 0.56 0.60 

RIV4 

Kls (x10-5 m s-1) 3.06 5.11 2.17 

0.45 7 

EDR (dimensionless) 0.33 0.14 0.43 
MIC (x10-7 m s-1) 7.32 8.47 8.63 
P (m3 m-3) - 1st layer 0.52 0.59 0.52 
P (m3 m-3) – 2nd layer 0.54 0.48 0.54 
P (m3 m-3) – 3rd layer 0.43 0.56 0.60 

RIV5 

Kls (x10-5 m s-1) 3.66 5.41 1.87 

0.45 8 

EDR (dimensionless) 0.43 0.24 0.43 
MIC (x10-7 m s-1) 8.47 8.47 8.63 
P (m3 m-3) - 1st layer 0.57 0.54 0.52 
P (m3 m-3) – 2nd layer 0.54 0.53 0.59 
P (m3 m-3) – 3rd layer 0.38 0.56 0.55 
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Table 4 – Calibrated parameters and performance indexes for the five clusters of each 

watershed upstream from the USM station 

Basin Cluster Parameter Ultisol Oxisol Interceptisol NS PBIAS (%) 

FLA 

FLA1 

Kls (x10-5 m s-1) 3.01 3.91 8.41 

0.45 4 

EDR (dimensionless) 0.44 0.44 0.14 

MIC (x10-7 m s-1) 8.47 4.00 8.05 

P (m3 m-3) - 1st layer 0.34 0.49 0.59 

P (m3 m-3) – 2nd layer 0.43 0.58 0.58 

P (m3 m-3) – 3rd layer 0.46 0.56 0.56 

FLA2 

Kls (x10-5 m s-1) 3.01 3.91 7.81 

0.44 3 

EDR (dimensionless) 0.44 0.44 0.14 

MIC (x10-7 m s-1) 8.47 4.00 8.05 

P (m3 m-3) - 1st layer 0.34 0.49 0.54 

P (m3 m-3) – 2nd layer 0.48 0.58 0.58 

P (m3 m-3) – 3rd layer 0.46 0.56 0.56 

FLA3 

Kls (x10-5 m s-1) 2.71 3.01 5.41 

0.39 6 

EDR (dimensionless) 0.44 0.44 0.14 

MIC (x10-7 m s-1) 6.16 4.00 7.74 

P (m3 m-3) - 1st layer 0.49 0.54 0.59 

P (m3 m-3) – 2nd layer 0.53 0.58 0.58 

P (m3 m-3) – 3rd layer 0.51 0.56 0.56 

FLA4 

Kls (x10-5 m s-1) 3.01 3.91 7.51 

0.43 0 

EDR (dimensionless) 0.44 0.44 0.14 

MIC (x10-7 m s-1) 8.47 4.00 7.47 

P (m3 m-3) - 1st layer 0.34 0.49 0.54 

P (m3 m-3) – 2nd layer 0.48 0.58 0.58 

P (m3 m-3) – 3rd layer 0.51 0.56 0.56 

 

 

Continuation... 
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Table 4 - Continuation 
Basin Cluster Parameter Ultisol Oxisol Interceptisol NS PBIAS (%) 
 

FLA5 

Kls (x10-5 m s-1) 3.01 3.31 5.71 

0.46 8 

EDR (dimensionless) 0.44 0.44 0.14 

MIC (x10-7 m s-1) 6.74 4.00 8.05 

P (m3 m-3) - 1st layer 0.44 0.54 0.59 

P (m3 m-3) – 2nd layer 0.53 0.53 0.53 

P (m3 m-3) – 3rd layer 0.46 0.56 0.46 

CAS 

CAS1 

Kls (x10-5 m s-1) 4.81 6.01 2.11 

0.43 11 

EDR (dimensionless) 0.24 0.14 0.44 

MIC (x10-7 m s-1) 4.42 3.42 4.58 

P (m3 m-3) - 1st layer 0.59 0.54 0.59 

P (m3 m-3) – 2nd layer 0.58 0.58 0.53 

P (m3 m-3) – 3rd layer 0.41 0.46 0.43 

CAS2 

Kls (x10-5 m s-1) 4.81 6.01 2.11 

0.41 8 

EDR (dimensionless) 0.24 0.34 0.44 

MIC (x10-7 m s-1) 4.42 3.42 4.58 

P (m3 m-3) - 1st layer 0.59 0.59 0.49 

P (m3 m-3) – 2nd layer 0.58 0.53 0.53 

P (m3 m-3) – 3rd layer 0.41 0.56 0.56 

CAS3 

Kls (x10-5 m s-1) 4.21 4.51 2.11 

0.37 12 

EDR (dimensionless) 0.24 0.14 0.24 

MIC (x10-7 m s-1) 3.84 3.42 3.42 

P (m3 m-3) - 1st layer 0.59 0.59 0.59 

P (m3 m-3) – 2nd layer 0.48 0.53 0.58 

P (m3 m-3) – 3rd layer 0.46 0.56 0.51 

 

 

 

Continuation... 
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Table 4 - Continuation... 
Basin Cluster Parameter Ultisol Oxisol Interceptisol NS PBIAS (%) 
 

CAS4 

Kls (x10-5 m s-1) 481 6.01 2.11 

0.43 11 

EDR  (dimensionless) 0.24 0.24 0.44 

MIC (x10-7 m s-1) 4.42 3.42 4.58 

P (m3 m-3) - 1st layer 0.59 0.59 0.59 

P (m3 m-3) – 2nd layer 0.53 0.58 0.53 

P (m3 m-3) – 3rd layer 0.41 0.46 0.46 

CAS5 

Kls (x10-5 m s-1) 4.21 4.81 1.81 

0.38 11 

EDR  (dimensionless) 0.24 0.14 0.24 

MIC (x10-7 m s-1) 3.84 3.42 3.42 

P (m3 m-3) - 1st layer 0.59 0.59 0.59 

P (m3 m-3) – 2nd layer 0.48 0.53 0.58 

P (m3 m-3) – 3rd layer 0.46 0.56 0.51 

USM 

USM1 

Kls (x10-5 m s-1) 2.76 3.66 3.37 

0.40 29 

EDR  (dimensionless) 0.33 0.43 0.43 

MIC (x10-7 m s-1) 8.47 8.63 4.00 

P (m3 m-3) - 1st layer 0.57 0.37 0.52 

P (m3 m-3) – 2nd layer 0.54 0.39 0.49 

P (m3 m-3) – 3rd layer 0.58 0.48 0.50 

USM2 

Kls (x10-5 m s-1) 2.76 3.66 3.67 

0.42 26 

EDR  (dimensionless) 0.43 0.33 0.43 

MIC (x10-7 m s-1) 8.47 8.63 4.00 

P (m3 m-3) - 1st layer 0.57 0.37 0.52 

P (m3 m-3) – 2nd layer 0.54 0.39 0.49 

P (m3 m-3) – 3rd layer 0.58 0.48 0.50 

 

 

 

 

Continuation... 
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Table 4 - Conclusion 
Basin Cluster Parameter Ultisol Oxisol Interceptisol NS PBIAS (%) 
 

USM3 

Kls (x10-5 m s-1) 2.76 3.36 3.37 

0.46 28 

EDR  (dimensionless) 0.43 0.43 0.43 

MIC (x10-7 m s-1) 8.47 8.63 4.00 

P (m3 m-3) - 1st layer 0.57 0.37 0.52 

P (m3 m-3) – 2nd layer 0.54 0.39 0.49 

P (m3 m-3) – 3rd layer 0.58 0.48 0.50 

USM4 

Kls (x10-5 m s-1) 2.76 3.66 3.07 

0.39 27 

EDR  (dimensionless) 0.33 0.43 0.43 

MIC (x10-7 m s-1) 8.47 8.63 4.00 

P (m3 m-3) - 1st layer 0.57 0.37 0.52 

P (m3 m-3) – 2nd layer 0.54 0.39 0.49 

P (m3 m-3) – 3rd layer 0.58 0.48 0.50 

USM5 

Kls (x10-5 m s-1) 2.76 3.96 3.37 

0.42 25 

EDR  (dimensionless) 0.43 0.43 0.43 

MIC (x10-7 m s-1) 8.47 8.63 4.00 

P (m3 m-3) - 1st layer 0.57 0.37 0.52 

P (m3 m-3) – 2nd layer 0.59 0.39 0.49 

P (m3 m-3) – 3rd layer 0.58 0.48 0.50 

Table 5 – Calibrated parameters and performance indexes for the five clusters of UPA 

Cluster Parameter Ultisol Oxisol Interceptisol NS PBIAS (%) 

UPA1 

Kls (x10-5 m s-1) 3.06 3.31 2.17 

0.57 26 

EDR (dimensionless) 0.13 0.14 0.33 

MIC (x10-7 m s-1) 5.00 5.58 8.58 

P (m3 m-3) - 1st layer 0.52 0.54 0.52 

P (m3 m-3) – 2nd layer 0.54 0.53 0.54 

P (m3 m-3) – 3rd layer 0.48 0.56 0.55 

 

Continuation... 
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Table 5 - Conclusion 
Cluster Parameter Ultisol Oxisol Interceptisol NS PBIAS (%) 

UPA2 

Kls (x10-5 m s-1) 2.46 2.71 2.17 

0.58 22 

EDR (dimensionless) 0.23 0.14 0.23 

MIC (x10-7 m s-1) 5.00 4.42 4.58 

P (m3 m-3) - 1st layer 0.52 0.54 0.52 

P (m3 m-3) – 2nd layer 0.49 0.53 0.54 

P (m3 m-3) – 3rd layer 0.48 0.51 0.55 

UPA3 

Kls (x10-5 m s-1) 2.76 2.71 2.17 

0.58 23 

EDR (dimensionless) 0.23 0.14 0.23 

MIC (x10-7 m s-1) 5.00 4.42 4.58 

P (m3 m-3) - 1st layer 0.52 0.54 0.52 

P (m3 m-3) – 2nd layer 0.49 0.53 0.54 

P (m3 m-3) – 3rd layer 0.48 0.51 0.55 

UPA4 

Kls (x10-5 m s-1) 2.76 3.01 2.17 

0.59 27 

EDR (dimensionless) 0.23 0.14 0.23 

MIC (x10-7 m s-1) 5.00 4.42 4.58 

P (m3 m-3) - 1st layer 0.52 0.54 0.52 

P (m3 m-3) – 2nd layer 0.54 0.53 0.54 

P (m3 m-3) – 3rd layer 0.43 0.51 0.50 

UPA5 

Kls (x10-5 m s-1) 2.76 3.01 2.17 

0.61 25 

EDR (dimensionless) 0.23 0.24 0.33 

MIC (x10-7 m s-1) 5.00 4.42 4.58 

P (m3 m-3) - 1st layer 0.52 0.54 0.52 

P (m3 m-3) – 2nd layer 0.54 0.53 0.54 

P (m3 m-3) – 3rd layer 0.43 0.56 0.50 

3.2 Transfer of calibrated parameters 

Figures 4 to 6 present the evaluation of the cluster transfer (only NS index). 

The black bars represent the application of clusters in the same watershed where 

they were calibrated, only being presented for comparison. The red bars represent 

clusters whose efficiency is unsatisfactory for the watershed under analysis. Blue 

bars refer to clusters with satisfactory performance (NS ≥ 0.3). 
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Figure 4 – Efficiency of calibration transfer to the watersheds upstream from the RIV 
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Figure 5 – Efficiency of calibration transfer to the watersheds upstream from USM 
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Figure 6 – Efficiency of calibration transfer for the UPA watershed 
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other DHSVM applications in which its magnitude was of some thousands of mm 

day-1 (ALVARENGA et al., 2016, 2017; CUO et al., 2006). The MIC magnitude in this 

paper was a few tens of mm day-1, therefore more consistent with reality. The 

maximum soil depth in the cited papers was set to less than 7.2 m, compensating 

the higher MIC values to simulate the streamflow due to the smaller soil depth 

leading to a decrease in the maximum soil storage, and consequently to greater 

runoff and streamflow. It is generally observed that the calibrated parameters of 

the clusters were close for each watershed, and did not present a trend when 

comparing the five “best” solutions for each soil class. The parameters with the 

most significant variation among clusters were MIC and P. When the MIC had its 

value increased the P was reduced, and vice versa. This behavior is explained by 

the fact that both influence the water storage in the soil in different ways, and 

consequently in the runoff and baseflow.  

Regarding the modeling efficiency, the NS values of the clusters of each 

watershed only presented small differences. These differences ranged from 0.37 

to 0.43 at CAS, with the worse performance (Table 4); and from 0.57 to 0.61 at UPA, 

with the best performance (Table 5). The existence of such small differences in NS 

confirms the non-linear characteristics of the calibration problem in the study area, 

thus indicating that the calibration problem has more than one feasible solution. 

This fact corroborates the previously highlighted results in other works with 

hydrological models (DUAN; SOROOSHIAN; GUPTA, 1992). Moreover, the proposed 

methodology of adjusting more than one set of calibrated parameters (cluster) may 

have the potential to transfer one or more of these clusters to similar catchments 

downstream or upstream of the calibrated watersheds, as demonstrated later in 

this paper. 

The calibrated parameters in some of the clusters of each watershed are 

quite close and result in virtually identical NS, as in the example of the RIV2, RIV3, 

RIV4, and RIV5 clusters (Table 3). This fact has its origin in the calibration method 

itself; the calibration system only explored the search space parameter values in 
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the vicinity of a good location, for which NS is acceptable, although there is a better 

performing cluster (RIV1). In other situations, as in UPA (Table 5), the optimal 

solution is close to those obtained for the clusters and in the same region of the 

search space. In both cases, the number of random solutions generated and 

verified in the process was not ideal due to the computational cost of the DHSVM 

model. The CS metaheuristic has likely improperly explored other promising 

regions of the search space, thus not allowing the calibration of even better 

solutions. However, the differences among calibrated parameters for the majority 

of the clusters (ITA on Table 3, for example) shows that several "optimal" solutions 

were found, making all the parameter sets feasible.  

The watersheds of Group I (upstream of RIV) presented better calibration, 

with NS varying between 0.38 and 0.56 in relation to Group II (upstream of USM), 

in which NS varied between 0.37 and 0.46. However, the better calibration indexes 

occurred for RIV (Group III). In this way, we can see a trend of better NS for larger 

watersheds, such as RIV (NS = 0.56) and UPA (NS = 0.61). IUN (the smallest 

watershed) presented the worst NS (0.49). In the smaller basins, the hydrological 

responses are faster, implying greater dynamics for the streamflow, and 

implicating in a worse performance of hydrologic models (MELO NETO et al., 2014; 

QI; GRUNWALD, 2005). In larger basins there is a tendency to amortize hydrological 

response, reflecting in better calibration, as found in other Brazilian basins 

(EDUARDO et al., 2016; FUKUNAGA, 2012; MELO NETO et al., 2014) and worldwide 

(PINIEWSKI; OKRUSZKO, 2011). These results may partly be a consequence of the 

flow modeling. In DHSVM, the runoff and the baseflow only displace one pixel per 

time step. This has a direct influence on the displacement time of the water along 

the watershed. In this case, since the pixel size was the same for all watersheds, 

the water displacement time in smaller sub-basins was modeled less accurately, 

implying in a worse estimate of the streamflow in its mouth. Moreover, such 

behavior may also have part of the explanation in the fact that meteorological data 

only came from measurements of two stations. So, the wide evapotranspiration 
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distribution could not be satisfactory, which may have negatively influenced 

streamflow modeling for the smaller watersheds. 

4.2 Transfer of calibrated parameters 

The analysis of Figure 4, Figure 5, and Figure 6 allows a series of inferences 

regarding the feasibility of transferring calibrated parameters among watersheds. 

First, approximately 81% of the 280 cluster transfers resulted in NS values above 

0.3, denoting satisfactory performance (NOORI; KALIN, 2016).  

In 54% of the cases, the transfer performance was equal to or greater than 

that of the specific watershed calibration. Similar transfer results were also found 

in the hydrologic modeling of three watersheds neighboring IRB using the Variable 

Infiltration Capacity – VIC (CAMPANHARO, 2013). The transferred clusters improved 

the modeling efficiency in 10% of the cases (increased NS values), which only 

happened for CAS (0.43 to 0.48), ITA (0.51 to 0.56), USM (0.46 to 0.48), and UPA 

(0.61 to 0.67). 

In a similar way to (YEN et al., 2015b), the results of this paper demonstrate 

the viability of transferring calibrated parameters for DHSVM among watersheds 

of the same basin. As also suggested by (YEN et al., 2015b), it is important to point 

out that model parameters may not be transferable by using different sources of 

land use data for the same watershed. However, there are other constraints for the 

influence of the watershed’s drainage area. The 53 transfers whose NS were 

unsatisfactory (19% of the total) occurred for watersheds smaller than 600 km2 

(IUN, FLA, and TCO). Of these, 52 were for IUN and FLA, and only one for the largest 

of the three (TCO). The transfer of clusters to all watersheds with an area greater 

than 900 km2 always resulted in satisfactory performance (NS ≥ 0.3). 

Moreover, verifying the transfer performance of clusters within Groups I and 

II, two exciting facts are observed: a) there is a reduction in the NS of the transfer 

with the decrease in the watershed area; b) the best transferred clusters came from 
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a watershed of the same Group; and c) the clusters of the watersheds belonging to 

a specific Group led to better NS when transferred to other watersheds of the same 

Group. 

For the smaller watersheds (IUN and FLA), the clusters transferred from 

downstream watersheds did not improve modeling compared to the better 

performance of the five original calibrations. The same trend was found in the 

calibration of the SWAT model (EDUARDO et al., 2016), meaning that application of 

the calibration parameters of larger basins tend to present lower efficiency in small 

basins. However, the performance of some transferred clusters in the present 

paper was satisfactory and better than that found by (EDUARDO et al., 2016). Such 

clusters came from the watersheds immediately downstream of IUN and FLA. 

In this way, there exists a relationship between the size of the watershed and 

the "relative position" of the watershed that provided the best transferred cluster. 

The streamflows of the smaller watersheds (less than 500 km2), namely IUN and 

FLA, were better modeled by clusters from watersheds immediately downstream. 

Intermediate area watersheds (between 500 and 1400 km2) had their flows best 

simulated by the clusters of watersheds immediately upstream. Finally, the best 

cluster in the larger basins (greater than 1400 km2) came from a basin upstream. 

These results indicate the same tendency evidenced by Eduardo et al. (2016), being 

that calibrated data for upstream sub-basins are feasible for downstream sub-

basins, with better performances for larger basins. 

5 CONCLUSIONS 

An exciting innovation of the proposed method is the adjustment of several 

sets of calibrated parameters (clusters) for each watershed. Other methods 

(BRIGHENTI; BONUMÁ; CHAFFE, 2016; PINIEWSKI; OKRUSZKO, 2011) only consider 

a single "optimal" set of calibrated parameters for each watershed. 
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The results obtained in the present paper show that the proposed method 

can be useful in the calibration as well as in extrapolating the parameters of the 

DHSVM model to regions that do not have information about the parameters of 

the model. Moreover, it still can improve the calibration result for a given 

watershed with the application of the calibrated parameters to another catchment. 
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