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Decay rates for second-order linear evolution problems 

with fractional laplacian operators  

Cleverson Roberto da LuzI , Maíra Fernandes Gauer PalmaI  

I Universidade Federal de Santa Catarina, Santa Catarina, SC, Brasil 

ABSTRACT 

In this work we study the asymptotic behavior of solutions for a general linear second-order evolution 

differential equation in time with fractional Laplace operators in ℝ𝑛  We obtain improved decay 

estimates with less demand on the initial data when compared to previous results in the literature. In 

certain cases, we observe that the dissipative structure of the equation is of regularity-loss type. Due to 

that special structure, to get decay estimates in high frequency region in the Fourier space it is 

necessary to impose additional regularity on the initial data to obtain the same decay estimates as in 

low frequency region. The results obtained in this work can be applied to several initial value problems 

associated to second-order equations, as for example, wave equation, plate equation, IBq, among 

others. 

Keywords: Asymptotic behavior; fractional Laplace operator; Fourier space; second-order equations 

1 INTRODUCTION 

We consider the following Cauchy problem with fractional Laplace 

operators in ℝ𝑛: 

𝑣𝑡𝑡  (𝑡, 𝑥) + (−∆)𝛿𝑣𝑡𝑡 (𝑡, 𝑥) + (−∆)𝛼𝑣(𝑡, 𝑥) +  (−∆)𝜃 𝑣𝑡(𝑡, 𝑥) = 0, 𝑡 ≥ 0, 𝑥 ∈ ℝ𝑛           (1) 

with initial data 

𝑣 (0, 𝑥) =  𝑣0(𝑥),   𝑣𝑡(0, 𝑥) =  𝑣1(𝑥),                                                                                             (2) 

https://creativecommons.org/licenses/by-nc-sa/4.0/
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where 𝛿, 𝛼 and 𝜃 are real numbers with 𝛿, 𝛼 ≥ 0 and 𝜃 𝜖 [0, 𝛼]. The fractional power 

operator (−∆)𝜃: 𝐻2𝜃 (ℝ𝑛)  → 𝐿2(ℝ𝑛) (𝜃 ≥ 0) is defined by 

(−∆)𝜃𝑣(𝑥) ∶= ℱ−1 ( |𝜉|2𝜃𝑣(𝜉)) (𝑥), 𝑣 𝜖 𝐻2𝜃 (ℝ𝑛), 𝑥 𝜖 ℝ𝑛, 

where ℱ denotes the usual Fourier transform in 𝐿2(ℝ𝑛) with respect to the x 

variable, 𝑣 = ℱ (𝑣),  𝐻𝑠 = 𝐻𝑠(ℝ𝑛) denotes the usual Sobolev space of 𝐿2 functions 

equipped with the norm ‖∙‖𝐻𝑠 and |∙| denotes the usual norm in ℝ𝑛. For simplicity 

of notations, in particular, we use in all text ‖∙‖ instead of ‖∙‖𝐿2. The operator 

(−∆)𝜃 is nonnegative and self-adjoint in 𝐿2(ℝ𝑛). 

The total energy 𝐸𝑣(𝑡) associated to the solution 𝑣(𝑡) of equation (1) is 

defined by 

𝐸𝑣(𝑡) =
1

2
{‖𝑣𝑡(𝑡)‖2 + ‖(−∆)

𝛿

2 𝑣𝑡(𝑡)‖
2

+ ‖(−∆)
𝛼

2  𝑣(𝑡)‖
2

}.                                      (3) 

In order to obtain estimates for the problem (1) - (2) we work with the 

corresponding problem in the Fourier space. Applying the Fourier transform with 

respect to the variable x, we obtain  

{
(1 +  |𝜉|2𝛿) �̂�𝑡𝑡 (𝑡, 𝜉)  +  |𝜉|2𝜃 𝑣𝑡  (𝑡, 𝜉)  + |𝜉|2𝛼 𝑣 (𝑡, 𝜉)  = 0,   𝑡 ≥  0,   𝜉 ∈  ℝ𝑛

𝑣(0, 𝜉)  =  𝑣0(𝜉),   �̂�𝑡(0, 𝜉) =  𝑣1(𝜉),   𝜉 ∈  ℝ𝑛.
         (4) 

The eigenvalues of the problem (4) have nonpositive real part, and they are 

given by 

𝜆± =  
|𝜉|2𝜃

2 (1 +  |𝜉|2𝛿)
 (−1 ±  √1 − 4|𝜉|2(𝛼−2𝜃) (1 + |𝜉|2𝛿)). 

The solution of (4) can be written as  

𝑣(𝑡, 𝜉) =  �̂�0(𝑡, 𝜉)𝑣0 (𝜉) +  �̂�1(𝑡, 𝜉)𝑣1(𝜉),  

where 



Luz, C.R.; Palma, M.F.G. | 3 

 
 

Ci. e Nat., Santa Maria, v.43, e14, 2021 

�̂�0(𝑡, 𝜉) =  
𝜆+ 𝑒𝜆−𝑡−𝜆−𝑒𝜆+𝑡

𝜆+−𝜆−
   and   �̂�1(𝑡, 𝜉) =  

𝑒𝜆+𝑡−𝑒𝜆−𝑡

𝜆+−𝜆−
.                            (5) 

Therefore 

𝑣(𝑡, 𝑥) = 𝑘𝐾0(𝑡, 𝑥) ∗  𝑣0(𝑥) + 𝑘𝐾1(𝑡, 𝑥) ∗  𝑣1(𝑥), 

with k a positive constant such that 𝑓 ∙ �̂� = 𝑘(𝑓 ∗ 𝑔). 

For 𝜀 > 0, we denote by 𝐸0(𝑡, 𝑥) and 𝐸∞(𝑡, 𝑥) the solution of (1) localized to 

low and high frequencies, that is, 

𝐸0 = 𝐸0(𝑡, 𝑥)(𝑣) =  ℱ−1(χ(𝜉)�̂�(𝑡, 𝜉)),                                                                             (6) 

𝐸∞ =  𝐸∞(𝑡, 𝑥)(𝑣) =  ℱ−1 ((1 − 𝜒(𝜉))�̂�(𝑡, 𝜉)),                                                            (7) 

where 𝜒(𝜉) is the characteristic function of {𝜉 𝜖 ℝ𝑛/|𝜉| < 𝜀}. To estimate the x-

derivatives norms of 𝑣  and  𝑣𝑡 it is sufficient to estimate the derivatives norms of 

𝐸0, 𝜕𝑡𝐸0, 𝐸∞ and 𝜕𝑡𝐸∞. 

If 𝜃 < 𝛿, we observe that the decay structure of (1) is of regularity-loss type 

which is characterized by the structure of the eigenvalues associated to the 

problem. The regularity-loss property ceases to occur in the case when 𝜃 = 𝛿. Due 

to that special structure, to get decay estimates in the high frequency region in 

the Fourier space it is necessary to impose additional regularity on the initial data 

to obtain the same decay estimates as in the low frequency region. If 𝛿 ≤ 𝜃 this 

effect does not appear, since the solution decays exponentially in the high 

frequency zone of the Fourier space (see Proposition 3.1). Such decay property of 

the regularity-loss type was also investigated for the dissipative Timoshenko 

system by Ide and Kawashima (2008), the plate equation under rotational inertia 

effects in ℝ𝑛 by Sugitani and Kawashima (2010); Charão et al. (2013a); D’Abbicco 

et al. (2016) and a hyperbolic-elliptic system of a radiating gas model by Kubo and 

Kawashima (2009).  

The case 𝜃 > 𝛼 is called super damping and was studied by Charão et al. 

(2020). Due to the presence of strong damping, some different techniques must 

be used. This case was not considered in this work. 
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Estimates for the solution to the wave equation with structural damping 

𝑢𝑡𝑡(𝑡, 𝑥) − ∆𝑢(𝑡, 𝑥) + 2𝑎(−∆)𝜃𝑢𝑡(𝑡, 𝑥) = 0, 𝑡 ≥ 0, 𝑥 ∈ ℝ𝑛,                                    (8) 

have been derived in Ikehata and Natsume (2012); Charão et al. (2013b); 

D’Abbicco and Reissig (2014); D’Abbicco and Ebert (2014); Karch (2000), where as 

the case of time-dependent damping coefficients is considered in Wirth (2012); Lu 

and Reissig (2009). In D’Abbicco and Ebert (2014), the authors decompose the 

solution to (8) into two parts, 𝑢 = 𝑢+ + 𝑢−, each one related to one of the two 

characteristics roots associated to (8). The asymptotic behavior of the Fourier 

transforms of each part hints to two different diffusion phenomena. This type of 

problem has been extensively studied in the mathematical and physical literature 

(see, for instance, Biler et al. (2001); Córdoba and Córdoba (2004); Fino and Karch 

(2010); Vázquez (2010)). Karch (2000) studied the large time behavior of solutions 

to the initial value problem (1) with 𝛿 = 0, 0 ≤ 2𝜃 < 𝛼  and a non-linear term 

𝐹(𝑥, 𝑡, 𝑢, 𝑢𝑡 , ∇u). In the cited paper, an analysis of the solution formula of the linear 

problem leads to the conclusion that they behave, as 𝑡 → ∞, like solutions of a 

similar diffusion equation to the problem in D’Abbicco and Ebert (2014). 

Next we mention some important previous works which are related with 

this paper. Sugitani and Kawashima (2010) studied a semilinear dissipative plate 

equation with rotational inertia effects and a frictional dissipation. To the linear 

problem, they used the explicit solution and equivalences for eigenvalues. To the 

semilinear problem, they introduce a Banach space X defined by the norm 

‖𝑢‖𝑋 =  ∑ 𝑠𝑢𝑝𝑡≥0(1 + 𝑡)
𝑘
4

𝜎0(𝑘)≤𝑠+1

 ‖𝜕𝑥
𝑘𝑢(𝑡)‖𝐻𝑠+1−𝜎0(𝑘)  

where 𝜎0(𝑘) = 𝑘 + [
𝑘+1

2
] and 𝑠 ≥ 𝜎0(𝑘) − 1. They proved that the problem is solved 

globally in time in the above function space and found optimal decay estimates of 
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solutions under the additional regularity assumption on the initial data 𝑢0  ∈  𝐻𝑠+1  

and 𝑢1  ∈ 𝐻𝑠, for s large enough. 

D’Abbicco and Reissig (2014) studied the semilinear structural damped 

wave equation. They obtained optimal decay to the norm of solution, to the 

energy terms and determined the influence of fractionary dissipation on the 

critical exponent. The method used for the linear problem is similar to the 

method applied in Sugitani and Kawashima (2010) (see also Wirth (2012)). 

Based on the energy method in Fourier space, introduced by Umeda et al. 

(1984), several works (see Dharmawardane et al. (2010); Ikehata and Natsume 

(2012); Ikehata et al. (2013)) showed decay estimates to some evolution equations 

in ℝ𝑛. Charão et al. (2013b,a) introduced a new method to get decay estimates 

supported on the energy method in Fourier space combined with the Haraux-

Komornik inequality, the monotonicity of the energy density in the Fourier space 

and the property of power singularities less than 𝑛 are integrable around the 

origin of ℝ𝑛. They obtained in Charão et al. (2013b) almost optimal decay for wave 

equation with a fractional damping and in Charão et al. (2013a) for the plate 

equation with rotational inertia effects and fractional damping. In da Luz et al. 

(2015) they extended these results to an abstract problem of second order 

differential equation. The decay rate 𝐸 (𝑡) = 𝑂(𝑡−𝑘) is almost optimal means that 

𝐸(𝑡) = 𝑂(𝑡−𝑘+ℇ)              (𝑡 → +∞) 

for any 𝜀 > 0. 

In this work we study a more general equation when compared to the 

problems (or at least to the associated linear problem) studied in Charão et al. 

(2013b,a); Ikehata and Natsume (2012); D’Abbicco and Ebert (2014); D’Abbicco and 

Reissig (2014); Karch (2000); Sugitani and Kawashima (2010); Polat and Ertas 

(2009); Wang and Xu (2013, 2012). The main objective of this work is to improve 

the results obtained in da Luz et al. (2015). Due to the method used in da Luz et al. 

(2015), the authors proved almost optimal decay rates only for the total energy of 
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order 𝛼 of the problem, that is, the method does not allow to obtain optimal 

decay rates for the total energy, as well as does not allows to estimate each term 

of the energy separately. However, as can be seen in Section 4 of this work, the 

rates can vary for each term of the energy. In this paper we obtain sharp decay 

rates for ‖𝜕𝑥
𝛾1𝑣(𝑡)‖, ‖𝜕𝑥

𝛾2𝑣𝑡(𝑡)‖, with 𝛾1,𝛾2 ∈ ℕ𝑛, and the corresponding regularity of 

the initial data. The regularity of the initial data assumed at this work is not 

optimal, a more detailed study on this topic is an open problem. 

To obtain the desired decay rates, we study low and high frequency regions 

separately. The next section will deal low frequency, using the ideas presented in 

D’Abbicco and Reissig (2014) and Sugitani and Kawashima (2010), i.e., we consider 

the explicit solution of the problem and estimate the eigenvalues. It will be 

necessary to separate in two cases: real eigenvalues (𝛼 > 2𝜃)  and complex 

eigenvalues (𝛼 ≤ 2𝜃). 

In the third section we study the problem in high frequency zone through a 

redesign of the energy method in Fourier space introduced by Charão et al. 

(2013b,a). In this section we find the additional regularity required in the in itial 

data (if 𝜃 < 𝛿) to obtain desired decay rates. 

In the last section we exhibit and prove the main theorems, combining the 

results of Sections 2 and 3. In addition, some important applications are 

presented, finding sharp decay rates for the norm of solution and for the terms of 

the energy associated with the wave equation with fractional damping, plate 

equation with rotational inertia effects and fractional damping and a Boussinesq 

equation with fractional damping. 

The method may further be applied to various other evolution equations in 

ℝ𝑛  with constant coefficients. Moreover, we can add terms of the type 

(−∆)𝛿1𝑣𝑡𝑡, (−∆)𝜃1𝑣𝑡, (−∆)𝛼1𝑣 in equation (1) and get decay rates to the solution of 

the new problem from the results obtained for the problem (1)-(2). This is 

possible because, for example, by adding the term (−∆)𝜃1𝑣𝑡 we obtain 
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|𝜉|2𝜃 + |𝜉|2𝜃1  

as coefficient of the term 𝑣𝑡 at the equation in Fourier space. But this coefficient 

is equivalent to |𝜉|2𝜃0, where 𝜃0 = min{𝜃, 𝜃1} in low frequency, and 𝜃0 = max{𝜃, 𝜃1} in 

high frequency. The same occurs when we add terms of the type (−∆)𝛿1𝑣𝑡𝑡, (−Δ)𝛼1𝑣 

in the equation (1). It means that using the method presented in this work, it is 

also possible to obtain estimates for this new problem. In order not to make this 

a long work, we’re going to consider only a simple example in order to illustrate 

this case (see Subsection 4.2.3). 

Note that in this work we do not discuss the existence and uniqueness of 

solutions because they can be obtained via theory of semigroups. 

2 LOW FREQUENCY REGION: |𝝃| < 𝜺 

In the following we use the notation 𝑓 ≈ 𝑔 if there exist two constants 

𝐶1, 𝐶2 > 0 such that  𝐶1𝑔 ≤ 𝑓 ≤ 𝐶2𝑔. If the inequality is one-sided, namely, if 𝑓 ≤ 𝐶2𝑔 

(resp. 𝑓 ≥ 𝐶1𝑔), then we write 𝑓 ≲ 𝑔 (resp. 𝑔 ≲ 𝑓). Furthermore, we use the symbol 

𝛾 to denote a multi-index with non-negative entries. 

We observe that 

‖𝜕𝑡
𝑗
 𝜕𝑥

𝛾
𝐸0(𝑡)‖

2
=  ∫ |𝜕𝑡

𝑗
𝑣(𝑡)|

2
|𝜉|2|𝛾|𝜒(𝜉)2𝑑𝜉

ℝ𝑛

 

≲ ‖𝑣0‖𝐿∞
2 ∫ |𝜕𝑡

𝑗
�̂�0(𝑡)|

2
|𝜉|2|𝛾|𝜒(𝜉)2𝑑𝜉 + ‖𝑣1‖𝐿∞

2 ∫ |𝜕𝑡
𝑗
�̂�1(𝑡)|

2
|𝜉|2|𝛾|𝜒(𝜉)2𝑑𝜉

ℝ𝑛ℝ𝑛 , 

with 𝐸0 defined in (6) and �̂�0, �̂�1 defined in (5). Setting 𝐼0 and 𝐼1 by integrals 

𝐼0
2(𝑗, |𝛾|) ≔  ∫

|𝜕𝑡
𝑗

(𝜆+𝑒𝜆−𝑡−𝜆−𝑒𝜆+𝑡)|
2

|𝜆+−𝜆−|2
|𝜉|2|𝛾|𝜒(𝜉)2𝑑𝜉

ℝ𝑛                                                 (9) 

and 
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𝐼1
2(𝑗, |𝛾|) ≔  ∫

|𝜕𝑡
𝑗

(𝑒𝜆+𝑡−𝑒𝜆−𝑡)|
2

|𝜆+−𝜆−|2ℝ𝑛  |𝜉|2|𝛾|𝜒(𝜉)2 𝑑𝜉                                                    (10) 

it follows from (5) that 

‖𝜕𝑡
𝑗
𝜕𝑥

𝛾
𝐸0(𝑡)‖

2
≲ ‖𝑣0‖

𝐿1
2 𝐼0

2(𝑗, |𝛾|) + ‖𝑣1‖
𝐿1
2 𝐼1

2(𝑗, |𝛾|).                                                 (11) 

To obtain the main results of this section, we estimate each one of the 

integrals 𝐼0 and 𝐼1. To do this, we study separately two cases, one where the 

eigenvalues are real and another where they are complex. In both cases we use 

the lemma below to obtain the estimates that we need. For the proof of the next 

result one may follow as in Gauer Palma (2013). 

Lemma 2.1. Let 𝑘 > −𝑛, 𝛽 > 0 and 𝑎 > 0. Then 

∫ 𝑒−𝑎|𝜉|𝛽𝑡|𝜉|𝑘𝑑𝜉 ≲ (1 + 𝑡)
−

𝑛+𝑘
𝛽 , ∀𝑡 > 0.

|𝜉|≤𝜀

 

 

2.1 Case 𝜶 > 𝟐𝜽: real eigenvalues 

We consider 𝜃 ∈ [0,
𝛼

2
) and 𝜀 > 0  defined by 𝜀𝛼−2𝜃 =

1

4
. For |𝜉| < 𝜀  we have 

|𝜉|2(𝛼−2𝜃) <
1

16
 and thus the eigenvalues are real. To estimate 𝐼0 and 𝐼1 we use the 

equivalences on the eigenvalues given by the following lemma. Note that 𝛿 has no 

influence on the behavior of eigenvalues in the low frequency region (see also 

Lemma 2.4). 

Lemma 2.2. If |𝜉| < 𝜀 then: 

(i) 𝜆+ ≈ −|𝜉|2(𝛼−𝜃)  (more precisely, −4(2 − √2)|𝜉|2(𝛼−𝜃) ≤ 𝜆+ ≤ −|𝜉|2(𝛼−𝜃)); 

(ii) 𝜆− ≈ −|𝜉|2𝜃 (more precisely, −|𝜉|2𝜃 ≤ 𝜆− ≤ −
1

4
 (1 +

1

√2
) |𝜉|2𝜃); 

(iii) 𝜆+ − 𝜆−  ≈  |𝜉|2𝜃 . 

Proof: 

(i) First, we note that 
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|𝜉|2(𝛼−2𝜃) <  
1

16
=  

4(2 − √2) − 2

16 (2 − √2)
2 . 

Multiplying the above estimate by 4 |𝜉|2(𝛼−2𝜃) it implies that 

−16 (2 − √2) |𝜉|2(𝛼−2𝜃) + 64 (2 − √2)
2

 |𝜉|4(𝛼−2𝜃)  ≤ −8 |𝜉|2(𝛼−2𝜃)  

≤ −4 |𝜉|2(𝛼−2𝜃) (1 + |𝜉|2𝛿). 

Using that 1 − 16 (2 − √2) |𝜉|2(𝛼−2𝜃) + 64 (2 − √2)
2

 |𝜉|4(𝛼−2𝜃) = 

 (1 − 8(2 − √2)|𝜉|2(𝛼−2𝜃))
2
 and 1 − 8 (2 − √2)|𝜉|2(𝛼−2𝜃) > 0, we obtain 

−8(2 − √2) |𝜉|2(𝛼−2𝜃) ≤  −1 + √1 − 4|𝜉|2(𝛼−2𝜃)(1 + |𝜉|2𝛿). 

From −
1

2
 ≤  −

1

2(1+|𝜉|2𝛿)  we conclude that 

−4(2 − √2) |𝜉|2(𝛼−𝜃)  ≤  
|𝜉|2𝜃

2(1 + |𝜉|2𝛿)
 (−1 + √1 − 4|𝜉|2(𝛼−2𝜃)(1 + |𝜉|2𝛿)) = 𝜆+. 

To prove that 𝜆+  ≤  − |𝜉|2(𝛼−𝜃) we see that 

(−1 + √1 − 4|𝜉|2(𝛼−2𝜃)(1 + |𝜉|2𝛿) )  ≤  −2|𝜉|2(𝛼−2𝜃)(1 + |𝜉|2𝛿) 

because 1 − 4|𝜉|2(𝛼−2𝜃)(1 + |𝜉|2𝛿) ≤  (1 − 2|𝜉|2(𝛼−2𝜃)(1 + |𝜉|2𝛿))
2

 and 

1 − 2|𝜉|2(𝛼−2𝜃)(1 + |𝜉|2𝛿) ≥ 0. Multiplying both sides of above estimate by 

|𝜉|2𝜃

2(1+|𝜉|2𝛿)
 we complete the proof. 

(ii) From 
1

2
≤ 1 − 8|𝜉|2(𝛼−2𝜃) ≤ 1 − 4|𝜉|2(𝛼−2𝜃) (1 + |𝜉|2𝛿) we can claim that 

1

4
 (1 +

1

√2
)  ≤  

1

2(1 + |𝜉|2𝛿)
 (1 + √1 − 4|𝜉|2(𝛼−2𝜃)(1 + |𝜉|2𝛿) )  ≤ 1. 
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To conclude the proof we multiply both sides by −|𝜉|2𝜃. 

(iii) By the choice of 𝜀, we have |𝜉|2(𝛼−2𝜃) (1 + |𝜉|2𝛿)  ≤  
1

8
. Thus 

−
1

2
 ≤  −4|𝜉|2(𝛼−2𝜃)(1 + |𝜉|2𝛿)  ≤ 0. 

Therefore 

|𝜉|2𝜃

2√2
 ≤  

|𝜉|2𝜃

1+|𝜉|2𝛿
 √1 − 4|𝜉|2(𝛼−2𝜃)(1 + |𝜉|2𝛿)  ≤  |𝜉|2𝜃 . 

Lemma 2.3. Let 𝐼0  and 𝐼1  given by (9) and (10), 𝑛 ≥  1 and 𝛾 multi-index. 

Then for all 𝑡 ≥  0 we have: 

(i) If 𝑛 + 2|𝛾| > 4𝜃, 𝑡ℎ𝑒𝑛 𝐼1 (0, |𝛾|)  ≲  (1 + 𝑡)−
1

𝛼−𝜃
(

𝑛

4
 + 

|𝛾|

2
 −𝜃); 

(ii) 𝐼1(1, |𝛾|)  ≲  {
(1 + 𝑡)− 

1

𝜃
(

𝑛

4
+ 

|𝛾|

2
) +  (1 + 𝑡)− 

1

𝛼−𝜃
 (

𝑛

4
 + 

|𝛾|

2
 – 𝜃)−1

(1 + 𝑡)−
1

𝛼−𝜃
 (

𝑛

4
+ 

|𝛾|

2
−𝜃)−1

                                    𝑖𝑓 𝜃 > 0  

𝑖𝑓 𝜃 = 0; 

(iii) 𝐼0 (0, |𝛾|)  ≲  (1 + 𝑡)− 
1

𝛼−𝜃
 (

𝑛

4
+ 

|𝛾|

2
); 

(iv) 𝐼0 (1, |𝛾|)  ≲  (1 + 𝑡)− 
1

𝛼−𝜃
 (

𝑛

4
+ 

|𝛾|

2
)−1. 

Proof: We will estimate (10) to obtain (i) and (ii). The items (iii) and (iv) can 

be proved in the same way using (9). 

(i) From Lemma 2.2 follow that 

|𝑒𝜆+𝑡 −  𝑒𝜆−𝑡|
2

|𝜆+ −  𝜆−|2
 ≲  

𝑒−2|𝜉|2(𝛼−𝜃)𝑡

|𝜉|4𝜃
. 

Using the above estimate and the Lemma 2.1 we obtain 

𝐼1
2 (0, |𝛾|)  ≲  ∫ 𝑒−2|𝜉|2(𝛼−𝜃)𝑡 |𝜉|2|𝛾|−4𝜃𝑑𝜉

|𝜉| < 𝜀

 ≲  (1 + 𝑡)
−

𝑛+2|𝛾|−4𝜃
2(𝛼−𝜃)  

because 𝑛 + 2|𝛾| − 4𝜃 > 0. 

(ii) Newly, using the Lemma 2.2, 

|𝜕𝑡(𝑒𝜆+𝑡− 𝑒𝜆−𝑡)|
2

|𝜆+ − 𝜆−|2
 ≲  

𝜆+
2  𝑒2𝜆+𝑡+ 𝜆−

2  𝑒2𝜆−𝑡

|𝜆+− 𝜆−|2
 ≲  |𝜉|4(𝛼−2𝜃) 𝑒−2|𝜉|2(𝛼−𝜃)𝑡 +  𝑒−𝑐|𝜉|2𝜃𝑡 ,  
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with 𝑐 =  
1

2
 (1 +  

1

√2
). 

In the same way it was done in (i), we get for 𝜃 ∈  (0,
𝛼

2
) 

𝐼1
2 (1, |𝛾|) ≲  ∫ (|𝜉|4(𝛼−2𝜃)𝑒−2|𝜉|2(𝛼−𝜃)𝑡 +  𝑒−𝑐|𝜉|2𝜃𝑡) |𝜉|2|𝛾|𝑑𝜉 

|𝜉| < 𝜀

≲  (1 + 𝑡)
−

𝑛+2|𝛾|+4(𝛼−2𝜃)
2(𝛼−𝜃) +  (1 + 𝑡)−

𝑛+2|𝛾|
2𝜃 . 

The case 𝜃 =  0 is immediate. 

Using the previous lemma we prove the following result to the real case for 

low frequency: 

Proposition 2.1. Let 𝛼,𝜃 such that 0 ≤ 2𝜃 <  𝛼, 𝛾 a multi-index and (𝑣0, 𝑣1)  ∈

 𝐿1 (ℝ𝑛) × 𝐿1(ℝ𝑛). Then the following estimates are true, for all 𝑡 ≥ 0: 

(i) If 𝑛 + 2|𝛾| > 4𝜃 and 𝑗 = 0, 1 then 

‖𝜕𝑡
𝑗
𝜕𝑥

𝛾
 𝐸0(𝑡)‖  ≲  ‖𝑣0‖𝐿1  (1 + 𝑡)

−
1

𝛼−𝜃
(

𝑛
4

+ 
|𝛾|
2

)−𝑗
 

                                                        + ‖𝑣1‖𝐿1(1 + 𝑡)−
1

𝛼−𝜃
(

𝑛

4
+ 

|𝛾|

2
−𝜃)−𝑗;                        (12)            

(ii) If 𝑛 + 2|𝛾|  ≤ 4𝜃  then 

‖𝜕𝑡𝜕𝑥
𝛾

𝐸0(𝑡)‖  ≲  ‖𝑣0‖𝐿1(1 + 𝑡)− 
1

𝛼−𝜃
(

𝑛

4
+ 

|𝛾|

2
)−1 +  ‖𝑣1‖𝐿1  (1 + 𝑡)− 

1

𝜃
 (

𝑛

4
+

|𝛾|

2
).         (13) 

Proof: For 𝑗 = 0 the item (i) follows directly from items (𝑖) and (𝑖𝑖𝑖) of Lemma 

2.3 and from estimate (11). To prove the item (𝑖𝑖), we choose 𝑗 =  1 in (11) and we 

use the Lemma 2.3, items (𝑖𝑖) and (𝑖𝑣). To obtain the best decay rate given in (𝑖𝑖), 

we see that 𝑛 + 2|𝛾|  ≤ 4𝜃  implies 

𝑛+2|𝛾|+4(𝛼−2𝜃)

2(𝛼−𝜃)
≥

𝑛+2|𝛾|

2𝜃
. 

Thus (13) is true. On the other hand, if 𝑛 + 2|𝛾| > 4𝜃  we have the opposite 

inequality. This implies the estimate (12) with 𝑗 = 1. 
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2.2 Case 𝜶 ≤ 𝟐𝜽 complex eigenvalues 

Now we consider 𝜃 𝜖 [
𝛼

2
, 𝛼]  and 𝜀 𝜖 (0,1) . In this case we have complex 

eigenvalues, given by 

𝜆± =
|𝜉|2𝜃

2(1 + |𝜉|2𝛿)
 (−1 ± 𝑖√4|𝜉|2(𝛼−2𝜃)(1 + |𝜉|2𝛿) − 1 ). 

We obtain the results for complex case following the same steps of the real case.  

Lemma 2.4. If |𝜉| < 𝜀 then: 

(𝑖) |𝜆+ − 𝜆−| ≈  |𝜉|𝛼; 

(𝑖𝑖) |𝜆±|
2

≲  |𝜉|2𝛼; 

(𝑖𝑖𝑖) |𝑒𝜆±𝑡| ≲  𝑒−
1

4
|𝜉|2𝜃𝑡. 

Proof: 

(𝑖) Using 1 ≤ 1 + |𝜉|2𝛿 ≤ 2, the proof follows directly from the inequality 

1

8
(4|𝜉|2(𝛼−2𝜃)(1 + |𝜉|2𝛿) − 1) ≤ |𝜉|2(𝛼−2𝜃) ≤ 4|𝜉|2(𝛼−2𝜃)(1 + |𝜉|2𝛿) − 1, ∀ 0 < |𝜉| < 𝜀. 

(𝑖𝑖𝑖) By Re (𝜆±) ≤ −
1

4
|𝜉|2𝜃 we have |𝑒𝜆±𝑡| ≤ 𝑒𝑅𝑒(𝜆±)𝑡 ≤ 𝑒−

1

4
|𝜉|2𝜃𝑡. 

The proof of the next lemma is quite similar to that of Lemma 2.3. We omit 

the details. 

Lemma 2.5. Let 𝐼0 and 𝐼1 given by (9) and (10), 𝑛 ≥ 1 and 𝛾 multi-index. Then, 

for all 𝑡 ≥ 0  we have for 𝜃 > 0: 

(𝑖) If 𝑛 + 2|𝛾| > 2𝛼, then 𝐼1(0, |𝛾|) ≲ (1 + 𝑡)−
1

𝜃
(

𝑛

4
+

|𝛾|

2
−

𝛼

2
); 

(𝑖𝑖) 𝐼1(1, |𝛾|) ≲ (1 + 𝑡)−
1

𝜃
(

𝑛

4
+

|𝛾|

2
); 

(𝑖𝑖𝑖) 𝐼0(0, |𝛾|) ≲ (1 + 𝑡)
−

1
𝜃

(
𝑛
4

+
|𝛾|
2

)
; 

(𝑖𝑣) 𝐼0(1, |𝛾|) ≲ (1 + 𝑡)−
1

𝜃
(

𝑛

4
+

|𝛾|

2
+

𝛼

2
). 

If 𝛼 = 𝜃 = 0 then it is immediate that 𝐼𝑖(𝑗, |𝛾|) ≲ 𝑒−
𝑡

4, 𝑡 ≥ 0, for all 𝑖, 𝑗 ∈ {0,1}. 

From estimate (11) and Lemma 2.5, we have the following result:  
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Proposition 2.2. Let 𝛿, 𝛼 ≥ 0, 𝜃 𝜖 [
𝛼

2
, 𝛼] , 𝛾 a multi-index and (𝑣0, 𝑣1) 𝜖 𝐿1(ℝ𝑛) ×

𝐿1(ℝ𝑛). Then, for 𝑡 ≥ 0, the following estimates are true: 

(𝑖) If 𝑛 + 2|𝛾| > 2𝛼  and 𝜃 > 0, then  

‖𝜕𝑥
𝛾

𝐸0(𝑡)‖ ≲ ‖𝑣0‖𝐿1(1 + 𝑡)
−

1
𝜃

(
𝑛
4

+
|𝛾|
2

)
+ ‖𝑣1‖𝐿1(1 + 𝑡)

−
1
𝜃

(
𝑛
4

+
|𝛾|
2

−
𝛼
2

)
; 

(𝑖𝑖) If 𝑛 ≥ 1 and 𝜃 > 0, then 

‖𝜕𝑡𝜕𝑥
𝛾

𝐸0(𝑡)‖  ≲ ‖𝑣0‖𝐿1(1 + 𝑡)−
1

𝜃
(

𝑛

4
+

|𝛾|

2
+

𝛼

2
) + ‖𝑣1‖𝐿1(1 + 𝑡)−

1

𝜃
(

𝑛

4
+

|𝛾|

2
); 

(𝑖𝑖𝑖) If 𝛼 = 𝜃 = 0 𝑡ℎ𝑒𝑛 ‖𝜕𝑡
𝑗
𝜕𝑥

𝛾
𝐸0(𝑡)‖ ≲ {‖𝑣0‖𝐿1 + ‖𝑣1‖𝐿1}𝑒−

𝑡

4, 𝑓𝑜𝑟 𝑗 = 0,1. 

3 HIGH FREQUENCY REGION: |𝝃| ≥ 𝜺 

The results obtained in the previous section complete the estimates we 

need to prove the Theorems 4.1 and 4.2 in the region of low frequency. Next, we 

are going to obtain estimates for the region of high frequency and the required 

regularity at initial data to obtain the desired decay. For this purpose, we apply 

the multiplier method in Fourier space. Note that the technique used in this 

section is suitable for 𝐿2 − 𝐿2estimates. To obtain estimates of the type 𝐿𝑝 − 𝐿𝑞 

another technique would need to be used. 

We consider, for |𝜉| ≥ 𝜀 , (with 𝜀 𝜖 (0,1)  defined at previous section), the 

following auxiliary function: 

𝜌(𝜉) = {

𝜀2𝛼+2𝛿−4𝜃|𝜉|2𝜃

2(1+|𝜉|2𝛿)
,   𝑖𝑓 𝛼 + 𝛿 ≥ 2𝜃 

𝜀−2𝛼+4𝜃|𝜉|2𝛼−2𝜃

4
,   𝑖𝑓𝛼 + 𝛿 < 2𝜃.

                                                           (14) 

It is easy to prove that 

𝜌(𝜉) ≤
|𝜉|2𝜃

2(1+|𝜉|2𝛿)
   and  𝜌(𝜉) ≤

|𝜉|2𝛼−2𝜃

2
                                                                       (15) 



14 | Decay rates for second-order linear evolution problems with fractional laplacian operators 

 

 

Ci. e Nat., Santa Maria, v.43, e14, 2021 

for |𝜉| ≥ 𝜀. 

We denote by 𝐸1(𝑡) the energy of order σ of the equation (4) in the Fourier 

space given by 

𝐸1(𝑡) =  
1

2
|𝜉|2𝛿+𝜎|𝑣𝑡(𝑡)|2 +

1

2
|𝜉|2𝛼+𝜎|𝑣(𝑡)|2, 𝑡 ≥ 0. 

Therefore 

2 ∫ 𝐸1(𝑡)𝑑𝜉 = ∫ (1 − 𝜒(𝜉))2{|𝜉|2𝛿+𝜎|𝑣𝑡(𝑡)|2 + |𝜉|2𝛼+𝜎|𝑣(𝑡)|2}
ℝ𝑛

 𝑑𝜉,
|𝜉|≥𝜀

 

where 𝜒 (𝜉) is the characteristic function of {𝜉 𝜖 ℝ𝑛/ |𝜉| < 𝜀}. 

Note that choosing 𝜎 in a suitable way and using Plancherel theorem, the 

above integral becames the 𝐿2 -norm of derivatives of 𝐸∞ and 𝜕𝑡𝐸∞ (see definition 

of 𝐸∞ at (7)). Thus our goal in this section is to estimate ∫ 𝐸1(𝑡)𝑑𝜉.
|𝜉|≥𝜀  

Next we show and prove the main result of this section. Note that the decay 

estimate (𝑖𝑖) in the next proposition is due to the regularity-loss structure of the 

equation for 𝜃 < 𝛿. In fact, to obtain decay rates to the energy in high frequency 

region we need to impose more regularity on the initial data. The decay rate is 

directly related to the additional regularity in the initial data (
𝛿−𝜃

𝛽
, 𝑤𝑖𝑡ℎ 𝜃 < 𝛿). Thus, 

to improve the decay rate it is necessary to take smaller 𝛽, but this imply that it is 

necessary additional regularity on the initial data. This does not occur in item (𝑖). 

Proposition 3.1. Let 𝛿, 𝛼 ≥ 0, 𝜃 𝜖 [0, 𝛼]  𝑎𝑛𝑑 𝜎 𝜖 ℝ. 

(𝑖) If (𝑣0, 𝑣1) 𝜖 𝐻𝛼+
𝜎

2(ℝ𝑛)  × 𝐻𝛿+
𝜎

2(ℝ𝑛)  𝑎𝑛𝑑  𝛿 ≤ 𝜃 ≤ 𝛼, then there is a constant 

c >0  such that 

∫ 𝐸1(𝑡, 𝜉) 𝑑𝜉 ≲  {‖𝑣1‖
𝐻

𝛿+
𝜎
2

2 + ‖𝑣0‖
𝐻

𝛼+
𝜎
2

2 } 𝑒−𝑐𝑡, ∀𝑡 ≥ 0.
|𝜉|≥𝜀

 

(𝑖𝑖) If (𝑣0, 𝑣1)  ∈  𝐻𝑠(ℝ𝑛)  ×  𝐻𝑟(ℝ𝑛), 𝛽 > 0 𝑎𝑛𝑑 𝜃 < 𝛿 then there is 𝐶 = 𝐶 (𝛽) > 0 

such that 
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∫ 𝐸1(𝑡, 𝜉) 𝑑𝜉 ≤ 𝐶 {‖𝑣1‖𝐻𝑟
2 + ‖𝑣0‖𝐻𝑠

2 } (1 + 𝑡)
−

1
𝛽 ,

|𝜉|≥𝜀

   ∀𝑡 ≥ 0 

with 𝑠 = 𝛼 +
𝛿−𝜃

𝛽
+

𝜎

2
 𝑎𝑛𝑑 𝑟 = 𝛿 +

𝛿−𝜃

𝛽
+

𝜎

2
. 

To prove Proposition 3.1 we need several estimates and lemmas on the 

solution 𝑣(𝑡, 𝜉) of the corresponding problem (4) in the Fourier space. Multiplying 

equation (4) by |𝜉|𝜎𝑣�̅̂� + 𝜌(𝜉)|𝜉|𝜎 �̅̂� and taking the real part we have 

𝑑

𝑑𝑡
𝐸(𝑡) + 𝐹(𝑡) = 𝑅(𝑡),    𝑡 ≥ 0                                                                                         (16) 

where 

𝐸(𝑡, 𝜉) =
1

2
(1 + |𝜉|2𝛿)|𝜉|𝜎|𝑣𝑡(𝑡)|2 +

1

2
|𝜉|2𝛼+𝜎|𝑣(𝑡)|2 + 𝜌(𝜉)(1 + |𝜉|2𝛿)|𝜉|𝜎𝑅𝑒{𝑣𝑡(𝑡)�̅�(𝑡)}

+
1

2
𝜌(𝜉)|𝜉|2𝜃+𝜎|𝑣(𝑡)|2; 

𝐹(𝑡, 𝜉) = |𝜉|2𝜃+𝜎|𝑣𝑡(𝑡)|2 + 𝜌(𝜉)|𝜉|2𝛼+𝜎|𝑣(𝑡)|2; 

𝑅(𝑡, 𝜉) = 𝜌(𝜉)(1 + |𝜉|2𝛿)|𝜉|𝜎|𝑣𝑡(𝑡)|2. 

By (15) it follows that 𝑅(𝑡) ≤
1

2
𝐹(𝑡). Substituting this estimate into (16), we 

get 

𝑑

𝑑𝑡
𝐸(𝑡) +

1

2
𝐹(𝑡) ≤ 0,                                                                                                           (17) 

for all 𝑡 ≥ 0 and |𝜉| ≥ 𝜀. 

Lemma 3.1. The functionals 𝐸(𝑡, 𝜉) and 𝐸1(𝑡, 𝜉) are equivalent for all 𝑡 ≥ 0 

and |𝜉| ≥ 𝜀. 

Proof: First, we note that 

±𝜌(𝜉)(1 + |𝜉|2𝛿) 𝑅𝑒{𝑣𝑡(𝑡)�̅̂�(𝑡)} ≤ (1 + |𝜉|2𝛿)
|�̂�𝑡(𝑡)|2

2𝜂
+ 𝜌(𝜉)2(1 + |𝜉|2𝛿)

𝜂|�̂�(𝑡)|2

2
 ≤

(1 + |𝜉|2𝛿)
|�̂�𝑡(𝑡)|2

2𝜂
+ |𝜉|2𝛼 𝜂|�̂�(𝑡)|2

8
,                                                     (18) 
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because, by (15), 

𝜌(𝜉)2(1 + |𝜉|2𝛿) ≤
|𝜉|2𝜃

2(1 + |𝜉|2𝛿)
 
|𝜉|2𝛼−2𝜃

2
 (1 + |𝜉|2𝛿) =

|𝜉|2𝛼

4
. 

Using (18) with positive sign and 𝜂 = 1, we have: 

𝐸(𝑡) ≲  |𝜉|𝜎 (
1

2
|𝜉|2𝛿|𝑣𝑡(𝑡)|2 +

1

2
|𝜉|2𝛼|𝑣(𝑡)|2) = 𝐸1(𝑡), 

since, by (15), 𝜌(𝜉)|𝜉|2𝜃 ≤
1

2
|𝜉|2𝛼 and 1 + |𝜉|2𝛿 ≤  (𝜀−2𝛿 + 1)|𝜉|2𝛿 . 

On the other hand, using (18) with negative sign and 𝜂 = 2, we have: 

𝐸(𝑡) ≥ |𝜉|𝜎 (
1

4
|𝜉|2𝛿|𝑣𝑡(𝑡)|2 +

1

4
|𝜉|2𝛼|𝑣(𝑡)|2) =

1

2
𝐸1(𝑡). 

Lemma 3.2. If 𝛿 ≤ 𝜃 ≤ 𝛼 𝑡ℎ𝑒𝑛 𝐸1(𝑡, 𝜉) ≲ 𝐹(𝑡, 𝜉) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 0 𝑎𝑛𝑑 |𝜉| ≥  𝜀. 

Proof: For all 𝑡 ≥ 0 and |𝜉| ≥ 𝜀, we have 

|𝜉|2𝛿|�̂�𝑡(𝑡)|2 ≲  |𝜉|2𝜃|�̂�𝑡(𝑡)|2                                                                                 (19) 

and 

|𝜉|2𝛼|𝑣(𝑡)|2 ≲  𝜌(𝜉)|𝜉|2𝛼|�̂�(𝑡)|2.                                                                                    (20) 

The last inequality actually works, because the case 𝛼 + 𝛿 ≥ 2𝜃 follows from (14) 

using the hypothesis  𝛿 ≤ 𝜃; and the case 𝛼 + 𝛿 < 2𝜃  follows from  |𝜉|2𝛼 ≳ |𝜉|2𝜃 , 

which works by hypothesis 𝜃 ≤ 𝛼 . 

Multiplying (19) and (20) by |𝜉|𝜎 and adding the two resulting inequalities, 

the lemma is proved. 

Using the estimate (17) and the Lemmas 3.1 and 3.2, we can prove that 

there are positive constants 𝑐, 𝑐1 such that 

𝑑

𝑑𝑡
 𝐸(𝑡) + 𝑐 𝐸(𝑡) ≤

𝑑

𝑑𝑡
𝐸(𝑡) + 𝑐1𝐸1(𝑡) ≤

𝑑

𝑑𝑡
𝐸(𝑡) +

1

2
𝐹(𝑡) ≤ 0, ∀𝑡 ≥ 0  𝑎𝑛𝑑  |𝜉| ≥ 𝜀. 
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By the equivalence between 𝐸 and 𝐸1 given by Lemma 3.1 we conclude that 

𝐸1(𝑡, 𝜉) ≲ 𝑒−𝑐𝑡𝐸1(0, 𝜉), ∀𝑡 ≥ 0  𝑎𝑛𝑑  |𝜉| ≥ 𝜀. 

Integrating over the region of high frequency |𝜉| ≥ 𝜀, we obtain 

∫ 𝐸1(𝑡, 𝜉) 𝑑𝜉 ≲ 𝑒−𝑐𝑡

|𝜉|≥𝜀

∫ {|𝜉|2𝛿+𝜎|𝑣1|2 + |𝜉|2𝛼+𝜎|𝑣0|2} 𝑑𝜉   
|𝜉|≥𝜀

≲  𝑒−𝑐𝑡  ∫ (1 + |𝜉|2)𝛿+
𝜎
2|𝑣1|2 𝑑𝜉

|𝜉|≥𝜀

+ ∫ (1 + |𝜉|2)𝛼+
𝜎
2|𝑣0|2 𝑑𝜉 ≲  {‖𝑣1‖

𝐻
𝛿+

𝜎
2

2 + ‖𝑣0‖
𝐻

𝛼+
𝜎
2

2 } 𝑒−𝑐𝑡.
|𝜉|≥𝜀

 

The proof of the item (𝑖) of Proposition 3.1 is complete. 

The next lemma is important to estimate the integral of energy in high 

frequency region in the Fourier space when there is the property of regularity-

loss, that is, when 𝜃 < 𝛿. Using the result of next lemma we will prove the item (𝑖𝑖) 

of Proposition 3.1. 

Lemma 3.3. We define  

𝐼(𝑡) = ∫ 𝐸1(𝑡, 𝜉) 𝑑𝜉
|𝜉|≥𝜀

    and    𝐽(𝑡) = ∫ 𝐹(𝑡, 𝜉) 𝑑𝜉.
|𝜉|≥𝜀

 

Let 𝛿, 𝛼 ≥ 0, 𝜃 𝜖 [0, 𝛼], 𝜎 𝜖 ℝ, 𝛽 > 0, 𝜃 < 𝛿 𝑎𝑛𝑑 (𝑣0, 𝑣1) 𝜖 𝐻𝑠(ℝ𝑛) × 𝐻𝑟(ℝ𝑛). Then there is 

𝐶𝛽 > 0 such that, for all 𝑡 ≥ 0, 

[𝐼(𝑡)]1+𝛽 ≤ 𝐶𝛽{‖𝑣1‖𝐻𝑟 + ‖𝑣0‖𝐻𝑠}𝛽𝐽(𝑡) 

with 𝑠 = 𝛼 +
𝛿−𝜃

𝛽
+

𝜎

2
 𝑎𝑛𝑑 𝑟 = 𝛿 +

𝛿−𝜃

𝛽
+

𝜎

2
. 

Proof: For any 𝛽 > 0 we have 
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[𝐼(𝑡)]1+𝛽 ≲ [∫ |𝜉|2𝛿+𝜎|𝑣𝑡(𝑡)|2 𝑑𝜉
|𝜉|≥𝜀

]

1+𝛽

+ [∫ |𝜉|2𝛼+𝜎|𝑣(𝑡)|2 𝑑𝜉
|𝜉|≥𝜀

]

1+𝛽

= [∫ |𝜉|
−

2𝜃+𝜎
1+𝛽 |𝜉|2𝛿+𝜎|𝑣𝑡(𝑡)|

2−
2

1+𝛽|𝜉|
2𝜃+𝜎
1+𝛽 |𝑣𝑡(𝑡)|

2
1+𝛽 𝑑𝜉

|𝜉|≥𝜀

]

1+𝛽

+ [∫ (𝜌(𝜉)|𝜉|2𝛼+𝜎)
−

1
1+𝛽 |𝜉|2𝛼+𝜎 |𝑣(𝑡)|

2−
2

1+𝛽 (𝜌(𝜉)|𝜉|2𝛼+𝜎)
1

1+𝛽 |�̂�(𝑡)|
2

1+𝛽 𝑑𝜉
|𝜉|≥𝜀

]

1+𝛽

 

for all 𝑡 ≥ 0. Then, by using Hölder’s inequality in 𝐿
1+𝛽

𝛽  and 𝐿1+𝛽 we obtain 

[𝐼(𝑡)]1+𝛽 ≲ {[∫ |𝜉|
−

2𝜃

𝛽
+𝜎+

2𝛿

𝛽
+2𝛿

 |�̂�𝑡(𝑡)|2 𝑑𝜉
|𝜉|≥𝜀

]
𝛽

+ [∫ 𝜌(𝜉)
−

1

𝛽 |𝜉|2𝛼+𝜎|𝑣(𝑡)|2 𝑑𝜉
|𝜉|≥𝜀

]
𝛽

} 𝐽(𝑡)   (21) 

for all 𝑡 ≥ 0. 

Next we need to estimate both integrals in the right hand side of the last 

inequality in terms of the initial data. Multiplying equation (4) by 𝑣�̅̂�, taking the 

real part on the resulting identity and integrating over the time interval (0, 𝑡) we 

obtain 

(1 + |𝜉|2𝛿) |�̂�𝑡(𝑡)|2 + |𝜉|2𝛼|�̂�(𝑡)|2

+ 2 ∫ |𝜉|2𝜃|𝑣𝑡(𝑠)|2 𝑑𝑠 = (1 + |𝜉|2𝛿) |�̂�1|2 + |𝜉|2𝛼|𝑣0|2.
𝑡

0

 

Now, multiplying both sides of the above identity by |𝜉|
−

2𝜃

𝛽
+𝜎+

2𝛿

𝛽  and 

integrating over |𝜉| ≥  𝜀 we obtain 

∫ |𝜉|
−

2𝜃

𝛽
+𝜎+

2𝛿

𝛽
+2𝛿

 |𝑣𝑡(𝑡)|2 𝑑𝜉 + ∫ |𝜉|
−

2𝜃

𝛽
+𝜎+

2𝛿

𝛽
+2𝛼

 |𝑣(𝑡)|2 𝑑𝜉
|𝜉|≥𝜀

 ≲
|𝜉|≥𝜀

 ∫ (1 + |𝜉|2)
𝛿+

𝛿−𝜃

𝛽
+

𝜎

2|�̂�1|2 𝑑𝜉
|𝜉|≥𝜀

+ ∫ (1 + |𝜉|2)
𝛼+

𝛿−𝜃

𝛽
+

𝜎

2|�̂�0|2
|𝜉|≥𝜀

 𝑑𝜉.                                                 (22) 

By the assumptions of lemma we have 𝛼 + 𝛿 ≥ 2𝜃. Then, by definition of 𝜌(𝜉) 

given in (14) it follows that 
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∫ 𝜌
|𝜉|≥𝜀

(𝜉)
−

1

𝛽|𝜉|2𝛼+𝜎 |𝑣(𝑡)|2 𝑑𝜉 ≤  𝐾𝛽 ∫ |𝜉|
−

2𝜃

𝛽
+𝜎+

2𝛿

𝛽
+2𝛼

|�̂�(𝑡)|2 𝑑𝜉
|𝜉|≥𝜀

.               (23) 

Using (22)-(23) in (21), we obtain 

[𝐼(𝑡)]1+𝛽 ≤  𝐶𝛽{‖𝑣1‖𝐻𝑟
2 + ‖𝑣0‖𝐻𝑠

2 }
𝛽

 𝐽(𝑡), ∀𝑡 ≥ 0, 

with 𝑟 = 𝛿 +
𝛿−𝜃

𝛽
+

𝜎

2
 𝑎𝑛𝑑 𝑠 = 𝛼 +

𝛿−𝜃

𝛽
+

𝜎

2
. 

Now, we observe that, by Lemma 3.3, we can write 

𝐾

2
[𝐼(𝑡)]1+𝛽 ≤

1

2
 𝐽(𝑡), ∀𝑡 ≥ 0, 

where 𝐾 = (𝐶𝛽{‖𝑣1‖𝐻𝑟
2 + ‖𝑣0‖𝐻𝑠

2 }
𝛽

)
−1

. 

By Lemma 3.1, there are constants m and M such that 

𝑚𝐸1(𝑡, 𝜉) ≤ 𝐸(𝑡, 𝜉) ≤ 𝑀𝐸1(𝑡, 𝜉), ∀𝑡 ≥ 0  𝑎𝑛𝑑  |𝜉| ≥ 𝜀. 

Consequently, we have 

𝑑

𝑑𝑡
∫ 𝐸(𝑡) 𝑑𝜉 +

𝐾

2𝑀1+𝛽
[∫ 𝐸(𝑡) 𝑑𝜉

|𝜉|≥𝜀
]

1+𝛽

≤
𝑑

𝑑𝑡
 ∫ 𝐸(𝑡) 𝑑𝜉 +

1

2
 𝐽(𝑡)  ≤ 0

|𝜉|≥𝜀|𝜉|≥𝜀
              

(24) 

where the last inequality is due to the estimate (17). 

Therefore, applying the Lyapunov’s theorem (see Komornik (1996)) in (24), 

we conclude the following decay estimate 

∫ 𝐸1(𝑡, 𝜉) 𝑑𝜉 ≤ 𝐶{‖𝑣1‖𝐻𝑟
2 + ‖𝑣0‖𝐻𝑠

2 } (1 + 𝑡)
−

1
𝛽 ,     ∀𝑡 ≥ 0,

|𝜉|≥𝜀

 

with 0 < 𝐶 = 𝐶(𝛽). The proof of the item (𝑖𝑖) of Proposition 3.1 is complete. 

4 RESULTS AND APPLICATIONS 
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4.1 Main results 

In this section we use the results obtained in the previous sections in order 

to find decay rates for the 𝐿2 -norm of 𝜕𝑥
𝛾1  𝑣(𝑡) and 𝜕𝑥

𝛾2𝑣𝑡(𝑡) and the corresponding 

regularity in the initial data. Observe that for appropriate choices of 𝛾1 and 𝛾2 we 

can obtain estimates for the 𝐿2-norm of solution, for each term of energy defined 

in (3) and also for 𝐻𝑚 norms of v and 𝑣𝑡. In Theorem 4.1 we do not determine 

values for  𝛽 > 0 for the purpose of to make this choice appropriately on each 

application. The same occurs in Theorem 4.2. We can choose 𝛽 so that give the 

sharp rates and in this case will require more of the regularity of the initial  data. 

Or we can also choose 𝛽 to require less regularity on the initial data, resulting in 

worse rates. 

Theorem 4.1. If 𝛿, 𝛼 ≥ 0, 𝜃 ∈ [0,
𝛼

2
) , 𝑣0 ∈ 𝐻𝑠(ℝ𝑛)  ∩ 𝐿1(ℝ𝑛) 𝑎𝑛𝑑 𝑣1 ∈  𝐻𝑟(ℝ𝑛) ∩

𝐿1(ℝ𝑛), for r and s specified below, then the solution of the problem (1) - (2) 

satisfies the following estimates for all 𝑡 ≥ 0: 

(𝑖) If 𝑛 + 2|𝛾1| > 4𝜃 then 

‖𝜕𝑥
𝛾1𝑣(𝑡)‖ ≲ ‖𝑣0‖𝐿1(1 + 𝑡)

−
1

𝛼−𝜃
(

𝑛
4

+
|𝛾1|

2
)

+ ‖𝑣1‖𝐿1(1 + 𝑡)
−

1
𝛼−𝜃

(
𝑛
4

+
|𝛾1|

2
−𝜃)

+ {‖𝑣1‖𝐻𝑟 + ‖𝑣0‖𝐻𝑠}  𝑓(𝑡), 

with 𝑓(𝑡) = {
𝑒−𝑐𝑡(𝑐 𝜖 ℝ)   𝑖𝑓 𝛿 ≤ 𝜃

(1 + 𝑡)
−

1

2𝛽    𝑖𝑓 𝜃 < 𝛿
,   𝑠 = {

|𝛾1|               𝑖𝑓 𝛿 ≤ 𝜃

|𝛾1| +
𝛿−𝜃

𝛽
  𝑖𝑓 𝜃 < 𝛿

   𝑎𝑛𝑑  𝑟 = 𝑠 + 𝛿 − 𝛼. 

(𝑖𝑖) If 𝑛 + 2|𝛾2| < 2𝛼 𝑎𝑛𝑑 𝜃 𝜖 [
𝑛

4
+

|𝛾2|

2
,

𝛼

2
)  𝑡ℎ𝑒𝑛 

‖𝜕𝑥
𝛾2𝑣𝑡(𝑡)‖ ≲ ‖𝑣0‖𝐿1(1 + 𝑡)

−
1

𝛼−𝜃
(

𝑛
4

+
|𝛾2|

2
)−1

+ ‖𝑣1‖𝐿1(1 + 𝑡)
−

1
𝜃

(
𝑛
4

+
|𝛾2|

2
)
 

                                          +{‖𝑣1‖𝐻𝑟 + ‖𝑣0‖𝐻𝑠} 𝑓(𝑡),                                                                    (25)                                                                                                                                             

and if 𝑛 + 2|𝛾2| ≥ 2𝛼 𝑜𝑟 𝜃 ∈  [0,
𝑛

4
+

|𝛾2|

2
)  𝑡ℎ𝑒𝑛 

‖𝜕𝑥
𝛾2𝑣𝑡(𝑡)‖ ≲ ‖𝑣0‖𝐿1(1 + 𝑡)

−
1

𝛼−𝜃
(

𝑛
4

+
|𝛾2|

2
)−1

+ ‖𝑣1‖𝐿1(1 + 𝑡)
−

1
𝛼−𝜃

(
𝑛
4

+
|𝛾2|

2
−𝜃)−1
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                                     +{‖𝑣1‖𝐻𝑟 + ‖𝑣0‖𝐻𝑠} 𝑓(𝑡),                                                                            (26)                                                                                                                                          

with 𝑓(𝑡) = {
𝑒−𝑐𝑡(𝑐 𝜖 ℝ)    𝑖𝑓 𝛿 ≤ 𝜃

(1 + 𝑡)
−

1

2𝛽     𝑖𝑓 𝜃 < 𝛿
,    𝑟 = {

|𝛾2|                 𝑖𝑓 𝛿 ≤ 𝜃

|𝛾2| +  
𝛿−𝜃

𝛽
   𝑖𝑓 𝜃 < 𝛿

  𝑎𝑛𝑑  𝑠 = 𝑟 + 𝛼 − 𝛿. 

Proof: 

(𝑖) By definition of 𝐸0 and 𝐸∞ we have 

‖𝜕𝑥
𝛾1𝑣(𝑡)‖ ≤ ‖𝜕𝑥

𝛾1𝐸0(𝑡)‖ + ‖𝜕𝑥
𝛾1𝐸∞(𝑡)‖. 

We choose 𝛾 = 𝛾1 at Proposition 2.1 and consider 𝑛 + 2|𝛾1| > 4𝜃.Using (12) and the 

Proposition 3.1 with 𝜎 = 2|𝛾1| − 2𝛼 it follows the result. 

(𝑖𝑖) We can write  

‖𝜕𝑥
𝛾2𝑣𝑡(𝑡)‖ ≤ ‖𝜕𝑥

𝛾2𝜕𝑡𝐸0(𝑡)‖ + ‖𝜕𝑡𝜕𝑥
𝛾2𝐸∞(𝑡)‖. 

Choosing 𝛾 = 𝛾2 at Proposition 2.1 and 𝜎 = 2|𝛾2| − 2𝛿 at Proposition 3.1, we have 

two options. If 𝑛 + 2|𝛾2| < 2𝛼 and 𝜃 𝜖 [
𝑛

4
+

|𝛾2|

2
,

𝛼

2
) we use (13) and obtain (25). For the 

case 𝑛 + 2|𝛾2| ≥ 2𝛼  𝑜𝑟  𝜃 ∈  [0,
𝑛

4
+

|𝛾2|

2
) using (13) it follows (26). 

In the same way, we prove the following result, for the case 𝛼 ≤ 2𝜃: 

Theorem 4.2. If 𝛿, 𝛼 ≥ 0, 𝜃 ∈ [
𝛼

2
, 𝛼] , 𝑣0  ∈  𝐻𝑠(ℝ𝑛) ∩ 𝐿1(ℝ𝑛) 𝑎𝑛𝑑 𝑣1 ∈ 𝐻𝑟(ℝ𝑛) ∩

𝐿1(ℝ𝑛), with f(t), r and s defined at same manner as in Theorem 4.1, the following 

estimates are true, for all 𝑡 ≥ 0: 

(𝑖) If 𝑛 + 2|𝛾1| > 2𝛼 then for 𝜃 > 0 we have 

‖𝜕𝑥
𝛾1𝑣(𝑡)‖ ≲ ‖𝑣0‖𝐿1(1 + 𝑡)

−
1
𝜃

(
𝑛
4

+
|𝛾1|

2
)

+ ‖𝑣1‖𝐿1(1 + 𝑡)
−

1
𝜃

(
𝑛
4

+
|𝛾1|

2
−

𝛼
2

)

+ {‖𝑣1‖𝐻𝑟 + ‖𝑣0‖𝐻𝑠} 𝑓(𝑡), 

and, for 𝜃 = 0, 

‖𝜕𝑥
𝛾1𝑣(𝑡)‖ ≲ {‖𝑣0‖𝐿1 + ‖𝑣1‖𝐿1}𝑒−

𝑡
4 + {‖𝑣1‖𝐻𝑟 + ‖𝑣0‖𝐻𝑠} 𝑓(𝑡); 
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(𝑖𝑖) If 𝑛 ≥ 1 𝑎𝑛𝑑 𝜃 > 0 𝑡ℎ𝑒𝑛 

‖𝜕𝑥
𝛾2𝑣𝑡(𝑡)‖ ≲ ‖𝑣0‖𝐿1(1 + 𝑡)

−
1
𝜃

(
𝑛
4

+
|𝛾2|

2
+

𝛼
2

)
+ ‖𝑣1‖𝐿1(1 + 𝑡)

−
1
𝜃

(
𝑛
4

+
|𝛾2|

2
)

+ {‖𝑣1‖𝐻𝑟 + ‖𝑣0‖𝐻𝑠} 𝑓(𝑡), 

and, if 𝜃 = 0, 

‖𝜕𝑥
𝛾2𝑣𝑡(𝑡)‖ ≲ {‖𝑣0‖𝐿1 + ‖𝑣1‖𝐿1}𝑒−

𝑡
4 + {‖𝑣1‖𝐻𝑟 + ‖𝑣0‖𝐻𝑠} 𝑓(𝑡). 

4.2 Applications 

Now let us apply the above results to several initial value problems 

associated with some dissipative partial differential equations of second order in 

time. 

 

4.2.1 Wave equation with fractional damping 

We consider the equation (1)-(2) with 𝛿 = 0 and 𝛼 = 1, that is, the wave 

equation 

𝑣𝑡𝑡(𝑡, 𝑥) − Δ𝑣(𝑡, 𝑥) + (−Δ)𝜃 𝑣𝑡(𝑡, 𝑥) = 0, 𝑡 ≥ 0, 𝑥 ∈ ℝ𝑛 

with initial data 

𝑣(0, 𝑥) = 𝑣0(𝑥), 𝑣𝑡(0, 𝑥) = 𝑣1(𝑥), 

and 𝜃 𝜖[0,1], where the associated energy is defined by 

𝐸𝑣(𝑡) =
1

2
{‖𝑣𝑡(𝑡)‖2 + ‖∇𝑣(𝑡)‖2}. 
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Note that 𝛿 ≤ 𝜃. Moreover, for this choice of 𝛼, we have 𝛼 > 2𝜃 if and only if 

𝜃 <
1

2
. Thus, it appears here the separation in cases 𝜃 ∈ [0,

1

2
) (real eigenvalues for 

the low frequency region) and 𝜃 ∈ [
1

2
, 1]  (complex eigenvalues for the low 

frequency region). If 𝜃 ∈ [0,
1

2
) , we can apply Theorem 4.1, to get that 

‖𝑣(𝑡)‖ ≲ {‖𝑣1‖𝐻−1∩𝐿1 + ‖𝑣0‖𝐿2∩𝐿1} (1 + 𝑡)−
1

1−𝜃
(

𝑛
4

−𝜃), 

for all 𝑛 > 4𝜃; 

‖𝑣𝑡(𝑡)‖ ≲ {
{‖𝑣1‖𝐿2∩𝐿1 + ‖𝑣0‖𝐻1∩𝐿1} (1 + 𝑡)−

1
4𝜃,                     𝑖𝑓 𝑛 = 1 𝑎𝑛𝑑 𝜃 ∈ [

1

4
,
1

2
) ,

{‖𝑣1‖𝐿2∩𝐿1 + ‖𝑣0‖𝐻1∩𝐿1} (1 + 𝑡)−
1

1−𝜃
(

𝑛
4

−𝜃)−1
, 𝑖𝑓 𝑛 ≥ 2 𝑜𝑟 𝜃 ∈ [0,

1

4
) ,

 

‖∇𝑣(𝑡)‖ ≲ {‖𝑣1‖𝐿2∩𝐿1 + ‖𝑣0‖𝐻1∩𝐿1} (1 + 𝑡)−
1

1−𝜃
(

𝑛
4

+
1
2

−𝜃), 

for 𝑛 ≥ 1. 

Now for 𝜃 ∈ [
1

2
, 1] we have 𝛼 ≤ 2𝜃. Then, using Theorem 4.2 we can obtain 

the following estimate for the norm of solution, for 𝑛 ≥ 3: 

‖𝑣(𝑡)‖ ≲ {‖𝑣1‖𝐻−1∩𝐿1 + ‖𝑣0‖𝐿2∩𝐿1} (1 + 𝑡)−
1
𝜃

(
𝑛
4

−
1
2

); 

and the following decay rates for the energy terms 

‖𝑣𝑡(𝑡)‖ + ‖∇𝑣(𝑡)‖ ≲  {‖𝑣1‖𝐿2∩𝐿1 + ‖𝑣0‖𝐻1∩𝐿1} (1 + 𝑡)−
𝑛

4𝜃, 

in the case 𝑛 ≥ 1. 

 

4.2.2 Plate equation with rotational inertia effects and fractional damping 

In the previous works Charão et al. (2013a); D’Abbicco et al. (2016) for the 

plate equation with rotational inertia effects and fractional damping the authors 
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considered the hypothesis 𝜃 ∈ [0,1]. In this application we generalize this interval 

assuming that 𝜃 ∈ [0,2]. Note that 𝛼 > 2𝜃 𝑖𝑓 𝜃 ∈ [0,1) and 𝛼 ≤ 2𝜃 𝑖𝑓 𝜃 ∈ [1,2], that is, 

to obtain the results it will be necessary to separate in two cases. This situation is 

similar to that one for the wave equation with fractional damping when the 

interval 𝜃 ∈ [0,1] is separated at intervals 𝜃 ∈ [0,
1

2
) and 𝜃 ∈ [

1

2
, 1] (see Charão et al. 

(2013b); Ikehata and Natsume (2012); D’Abbicco and Reissig (2014)). 

We consider the following problem: 

{
𝑣𝑡𝑡(𝑡, 𝑥) − ∆𝑣𝑡𝑡(𝑡, 𝑥) + ∆2𝑣(𝑡, 𝑥) + (−∆)𝜃𝑣𝑡(𝑡, 𝑥) = 0, 𝑡 ≥ 0, 𝑥 ∈ ℝ𝑛

𝑣 (0, 𝑥) = 𝑣0(𝑥),   𝑣𝑡(0, 𝑥) = 𝑣1(𝑥),
 

with 𝜃 ∈ [0,2]. That is, we take 𝛿 = 1 and 𝛼 = 2 in (1)-(2). 

The associated energy is given by 

𝐸𝑣(𝑡) =
1

2
{‖𝑣t(𝑡)‖2 + ‖∇𝑣𝑡(𝑡)‖2 + ‖∆𝑣(𝑡)‖2}. 

If 𝜃 ∈ [0,1) , we consider |𝛾1| = 0 𝑎𝑛𝑑 
1

2𝛽
=

1

2−𝜃
(

𝑛

4
− 𝜃).  By item (𝑖)  from 

Theorem 4.1, we have the following estimate for the 𝐿2-norm of solution, for all 

𝑛 > 4𝜃: 

‖𝑣(𝑡)‖ ≲ {‖𝑣1‖𝐻𝑟∩𝐿1 + ‖𝑣0‖𝐻𝑠∩𝐿1} (1 + 𝑡)−
1

2−𝜃
(

𝑛
4

−𝜃), 

with 𝑟 =
(1−𝜃) (𝑛−4𝜃)

2(2−𝜃)
− 1 𝑎𝑛𝑑 𝑠 =

(1−𝜃) (𝑛−4𝜃)

2(2−𝜃)
. 

In order to get decay rates for the energy, we estimate each term of it 

separately. In the next three estimates we assume 𝜃 ∈ [0,1).  At item (𝑖𝑖)  of 

Theorem 4.1 we can choose |𝛾2| = 0 𝑤𝑖𝑡ℎ 
1

2𝛽
=

𝑛

4𝜃
 in (25) and 

1

2𝛽
=

1

2−𝜃
(

𝑛

4
− 𝜃) + 1 in 

(26), to obtain 

‖𝑣𝑡(𝑡)‖ ≲ {
{‖𝑣1‖𝐻𝑟1∩𝐿1 + ‖𝑣0‖𝐻𝑠1∩𝐿1} (1 + 𝑡)−

𝑛
4𝜃,                     𝑖𝑓 𝑛 < 4  𝑎𝑛𝑑  𝜃 ∈ [

𝑛

4
, 1) ,

{‖𝑣1‖𝐻𝑟2∩𝐿1 + ‖𝑣0‖𝐻𝑠2∩𝐿1} (1 + 𝑡)−
1

2−𝜃
(

𝑛
4

−𝜃)−1, 𝑖𝑓 𝑛 ≥ 4  𝑜𝑟  𝜃 ∈ [0,
𝑛

4
) ,
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with 𝑟1 =
(1−𝜃)𝑛

2𝜃
,  𝑠1 =

(1−𝜃)𝑛

2𝜃
+ 1, 𝑟2 =

(1−𝜃) (𝑛−8𝜃+8)

2(2−𝜃)
  𝑎𝑛𝑑  𝑠2 =

(1−𝜃) (𝑛−8𝜃+8)

2(2−𝜃)
+ 1. 

Now, if |𝛾2| = 1, with 
1

2𝛽
=

1

𝜃
 (

𝑛

4
+

1

2
) in (25) and 

1

2𝛽
=

1

2−𝜃
(

𝑛

4
+

1

2
− 𝜃) + 1 in (26), 

by item (𝑖𝑖) in Theorem 4.1 it follows that 

‖∇𝑣𝑡(𝑡)‖ ≲ {
{‖𝑣1‖𝐻𝑝∩𝐿1 + ‖𝑣0‖𝐻𝑞∩𝐿1} (1 + 𝑡)−

3
4𝜃,                          𝑖𝑓 𝑛 = 1 𝑎𝑛𝑑 𝜃 ∈ [

3

4
, 1),

{‖𝑣1‖𝐻𝑟∩𝐿1 + ‖𝑣0‖𝐻𝑠∩𝐿1} (1 + 𝑡)−
1

2−𝜃
(

𝑛
4

+
1
2

−𝜃)−1, 𝑖𝑓 𝑛 ≥ 2 𝑜𝑟 𝜃 ∈ [0,
3

4
) ,

 

where 𝑝 = 1 +
(1−𝜃) (𝑛+2)

2𝜃
, 𝑞 = 2 +

(1−𝜃) (𝑛+2)

2𝜃
, 𝑟 = 1 +

(1−𝜃) (𝑛−8𝜃+10)

2(2−𝜃)
  𝑎𝑛𝑑  𝑠 = 2 +

(1−𝜃) (𝑛−8𝜃+10)

2(2−𝜃)
. 

On the other hand, if |𝛾1| = 2 𝑎𝑛𝑑 
1

2𝛽
=

1

2−𝜃
(

𝑛

4
+ 1 − 𝜃), the Theorem 4.1, item 

(𝑖), gives us: 

‖Δ𝑣(𝑡)‖ ≲ {‖𝑣1‖𝐻𝑟∩𝐿1 + ‖𝑣0‖𝐻𝑠∩𝐿1} (1 + 𝑡)−
1

2−𝜃
(

𝑛
4

+1−𝜃) 

where 𝑟 = 1 +
(1−𝜃) (𝑛−4𝜃+4)

2(2−𝜃)
 𝑎𝑛𝑑 𝑠 = 2 +

(1−𝜃) (𝑛−4𝜃+4)

2(2−𝜃)
. 

The result for the case 𝜃 ∈ [1,2] is obtained similarly to the previous case, 

using the Theorem 4.2 instead of Theorem 4.1. The decay rates obtained to the 

𝐿2-norm of solution are: 

‖𝑣(𝑡)‖ ≲ {‖𝑣1‖𝐻−1∩𝐿1 + ‖𝑣0‖𝐿2∩𝐿1} (1 + 𝑡)−
1
𝜃

(
𝑛
4

−1), 

for 𝑛 > 4. For the energy terms we have: 

‖𝑣𝑡(𝑡)‖ ≲ {‖𝑣1‖𝐿2∩𝐿1 + ‖𝑣0‖𝐻1∩𝐿1} (1 + 𝑡)−
𝑛

4𝜃; 

‖∇𝑣𝑡(𝑡)‖ ≲ {‖𝑣1‖𝐻1∩𝐿1 + ‖𝑣0‖𝐻2∩𝐿1} (1 + 𝑡)−
1
𝜃

(
𝑛
4

+
1
2

); 

‖∆𝑣(𝑡)‖ ≲ {‖𝑣1‖𝐻1∩𝐿1 + ‖𝑣0‖𝐻2∩𝐿1} (1 + 𝑡)−
𝑛

4𝜃. 

Remark 4.1. The plate equation without the inertia rotational effects, that 

is, (1)-(2) with 𝛼 = 2 and 𝛿 = 0, does not have the structure of regularity-loss. In 
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this case, the decay rates are equal to the above rates, but without assume 

additional regularity at the initial data. 

4.2.3 Boussinesq equation with fractional damping 

In this subsection, we want to show that it is possible to add terms of type 

(−∆)𝛿1𝑣𝑡𝑡, (−∆)𝜃1𝑣𝑡, (−∆)𝛼1𝑣 in the equation (1) in order to obtain decay rates for 

the total energy and for the 𝐿2-norm of solution from the previous results. 

However, we consider just a simple example to illustrate this case.  

In Polat and Ertas (2009) the authors studied the Boussinesq equation (IBq) 

with the strong dissipation ∆𝑣𝑡 (see Wang and Xu (2013, 2012)). Next, we regard a 

more general case than the linear problem studied in Polat and Ertas (2009), 

considering the following IBq with fractional damping in ℝ𝑛: 

𝑣𝑡𝑡(𝑡, 𝑥) − ∆𝑣(𝑡, 𝑥) − ∆𝑣𝑡𝑡(𝑡, 𝑥) + ∆2𝑣(𝑡, 𝑥) + (−∆)𝜃𝑣𝑡(𝑡, 𝑥) = 0, 𝑡 ≥ 0, 𝑥 ∈ ℝ𝑛                      (27) 

with 𝜃 𝜖 [0,1] and initial data 

𝑣(0, 𝑥) = 𝑣0(𝑥), 𝑣𝑡(0, 𝑥) = 𝑣1(𝑥).                                                                                 (28) 

The energy associated to this equation is given by 

𝐸𝑣(𝑡) =
1

2
{‖𝑣𝑡(𝑡)‖2 + ‖∇𝑣(𝑡)‖2 + ‖∇𝑣𝑡(𝑡)‖2 + ‖∆𝑣(𝑡)‖2}. 

Applying the Fourier transform in (27) and (28), we obtain 

{
(1 + |𝜉|2)𝑣𝑡𝑡(𝑡, 𝜉) + |𝜉|2𝜃𝑣𝑡(𝑡, 𝜉) + (|𝜉|2 + |𝜉|4) �̂�(𝑡, 𝜉) = 0,

𝑣(0, 𝜉) = 𝑣0(𝜉), 𝑣𝑡(0, 𝜉) = 𝑣1(𝜉).
 

This problem is not a specific case of the initial problem (4). But we note 

that for |𝜉| < 𝜀 is valid the equivalence 

|𝜉|2 ≈ |𝜉|2 + |𝜉|4, 
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which leads us to conclude that the estimates in the low frequency for this 

equation are the same of Propositions 2.1 and 2.2 considering 𝛼 = 𝛿 = 1. 

On the other hand, if |𝜉| ≥ 𝜀, then 

|𝜉|4 ≈ |𝜉|2 + |𝜉|4, 

and therefore the estimates and regularity in the initial data for this equation at 

high frequency are given by Proposition 3.1, with 𝛼 = 2 𝑎𝑛𝑑 𝛿 = 1. This gives us the 

following results: 

Theorem 4.3. If 𝜃 𝜖 [0,
1

2
)  𝑎𝑛𝑑 (𝑣0, 𝑣1) 𝜖 [𝐻𝑠(ℝ𝑛) ∩ 𝐿1(ℝ𝑛)] × [𝐻𝑟(ℝ𝑛) ∩ 𝐿1(ℝ𝑛)], 

with r and s specified in each case below, then the solution of the problem (27)-

(28) satisfies the following decay estimates: 

(𝑖) If 𝑛 > 4𝜃 then for 𝑡 ≥ 0 

‖𝑣(𝑡)‖ ≲  {‖𝑣1‖𝐻𝑟∩𝐿1 + ‖𝑣0‖𝐻𝑠∩𝐿1} (1 + 𝑡)−
1

1−𝜃
(

𝑛
4

−𝜃), 

with 𝑟 =
𝑛−4𝜃

2
− 1  𝑎𝑛𝑑  𝑠 =

𝑛−4𝜃

2
. 

(𝑖𝑖) If 𝑛 ≥ 1 𝑡ℎ𝑒𝑛 𝑓𝑜𝑟 𝑡 ≥ 0 

‖∇𝑣(𝑡)‖ ≲ {‖𝑣1‖𝐻𝑟∩𝐿1 + ‖𝑣0‖𝐻𝑠∩𝐿1} (1 + 𝑡)−
1

1−𝜃
(

𝑛
4

+
1
2

−𝜃), 

with 𝑟 =
𝑛+2−4𝜃

2
 𝑎𝑛𝑑 𝑠 = 1 +

𝑛+2−4𝜃

2
; 

‖∆𝑣(𝑡)‖ ≲ {‖𝑣1‖𝐻𝑟∩𝐿1 + ‖𝑣0‖𝐻𝑠∩𝐿1} (1 + 𝑡)−
1

1−𝜃
(

𝑛
4

+1−𝜃), 

with 𝑟 = 1 +
𝑛+4−4𝜃

2
 𝑎𝑛𝑑 𝑠 = 2 +

𝑛+4−4𝜃

2
; 

‖𝑣𝑡(𝑡)‖ ≲ {
{‖𝑣1‖𝐻𝑟1∩𝐿1 + ‖𝑣0‖𝐻𝑠1∩𝐿1} (1 + 𝑡)−

1
4𝜃,                     𝑖𝑓 𝑛 = 1 𝑎𝑛𝑑 𝜃 𝜖 [

1

4
,
1

2
) ,

{‖𝑣1‖𝐻𝑟2∩𝐿1 + ‖𝑣0‖𝐻𝑠2∩𝐿1} (1 + 𝑡)−
1

1−𝜃
(

𝑛
4

−𝜃)−1, 𝑖𝑓 𝑛 ≥ 2 𝑜𝑟 𝜃 𝜖 [0,
1

4
) ,

 

with  𝑟1 =
(1−𝜃)𝑛

2𝜃
,  𝑠1 = 1 +

(1−𝜃)𝑛

2𝜃
,  𝑟2 =

𝑛−8𝜃+4

2
  𝑎𝑛𝑑  𝑠2 = 1 +

𝑛−8𝜃+4

2
; 



28 | Decay rates for second-order linear evolution problems with fractional laplacian operators 

 

 

Ci. e Nat., Santa Maria, v.43, e14, 2021 

‖∇𝑣𝑡(𝑡)‖ ≲ {‖𝑣1‖𝐻𝑟∩𝐿1 + ‖𝑣0‖𝐻𝑠∩𝐿1} (1 + 𝑡)−
1

1−𝜃
(

𝑛
4

+
1
2

−𝜃)−1, 

with  𝑟 = 1 +
𝑛−8𝜃+6

2
  𝑎𝑛𝑑  𝑠 = 2 +

𝑛−8𝜃+6

2
. 

Theorem 4.4. If 𝜃 𝜖 [
1

2
, 1]  𝑎𝑛𝑑 (𝑣0, 𝑣1) 𝜖 [𝐻𝑠(ℝ𝑛) ∩ 𝐿1(ℝ𝑛)] × [𝐻𝑟(ℝ𝑛) ∩ 𝐿1(ℝ𝑛)] , 

with r and s defined in each case, the following decay estimates for the problem 

(27)-(28) are true: 

(𝑖) If 𝑛 > 2 𝑡ℎ𝑒𝑛 𝑓𝑜𝑟  𝑡 ≥ 0 

‖𝑣(𝑡)‖ ≲  {‖𝑣1‖𝐻𝑟∩𝐿1 + ‖𝑣0‖𝐻𝑠∩𝐿1} (1 + 𝑡)−
1
𝜃

(
𝑛
4

−
1
2

), 

with 𝑟 = −1 𝑎𝑛𝑑 𝑠 = 0 𝑖𝑛 𝑐𝑎𝑠𝑒 𝜃 = 1, 𝑎𝑛𝑑 𝑤𝑖𝑡ℎ 𝑟 =
(1−𝜃) (𝑛−2)

2𝜃
− 1 𝑎𝑛𝑑 𝑠 =

(1−𝜃) (𝑛−2)

2𝜃
 𝑖𝑛 𝑐𝑎𝑠𝑒 𝜃 < 1. 

(𝑖𝑖) If 𝑛 ≥ 1 𝑡ℎ𝑒𝑛 𝑓𝑜𝑟 𝑡 ≥ 0 

‖∇𝑣(𝑡)‖ +  ‖𝑣𝑡(𝑡)‖ ≲ {‖𝑣1‖𝐻𝑟∩𝐿1 + ‖𝑣0‖𝐻𝑠∩𝐿1} (1 + 𝑡)−
𝑛

4𝜃, 

with 𝑟 = 0 𝑎𝑛𝑑 𝑠 = 1 𝑖𝑛 𝑐𝑎𝑠𝑒 𝜃 = 1, 𝑎𝑛𝑑 𝑤𝑖𝑡ℎ 𝑟 =  
(1−𝜃)𝑛

2𝜃
 𝑎𝑛𝑑 𝑠 = 1 +

(1−𝜃)𝑛

2𝜃
 𝑖𝑛 𝑐𝑎𝑠𝑒 𝜃 < 1; 

‖∆𝑣(𝑡)‖ +  ‖∇𝑣𝑡(𝑡)‖ ≲ {‖𝑣1‖𝐻𝑟∩𝐿1 + ‖𝑣0‖𝐻𝑠∩𝐿1} (1 + 𝑡)−
1
𝜃

(
𝑛
4

+
1
2

), 

with 𝑟 = 1 𝑎𝑛𝑑 𝑠 = 2 𝑖𝑛 𝑐𝑎𝑠𝑒 𝜃 = 1, 𝑎𝑛𝑑 𝑤𝑖𝑡ℎ 𝑟 = 1 +
(1−𝜃) (𝑛+2)

2𝜃
 𝑎𝑛𝑑 𝑠 = 2 +

(1−𝜃) (𝑛+2)

2𝜃
  

𝑎𝑡 𝑐𝑎𝑠𝑒 𝜃 < 1. 
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