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1. INTRODUCTION

Around the turn of the is" century and along the first half of the

zo" century, different analytical approaches were devised for solving partial

differential equations that model various engineering applications .. Although

severely limited to certain classes of problems, almost always as linear or

linearized formulations, these classical ideas were responsible for a

considerable amount of mathematical and physical analysis, that markedly

aided the technological progress then achieved, supporting the intense

experimental activity still required. The second half of this century, due to the

increasing availability of computational performance, after both the hardware

enhancement and numerical methods development, witnessed the
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continuous advancement of the role of computational simulation in

engineering analysis and designo Discrete numerical methods are still

nowadays responsible for most of the challenges and tasks accomplished,

and most frequently employed in commercial software for multipurpose

usage. Nevertheless, a number of hybrid methodologies have been

appearing in the open literature, that to within different degrees of success,

attempt to match the classical analytical ideas with the presently solid

knowledge basis on numerical analysis.

Within the last two decades, the classical integral transform

method [1] gained a hybrid numerical-analytical structure, offering user

controlled accuracy and quite efficient computational performance for a wide

variety of a priori non transformable problems [2-6], including the nonlinear

formulations of interest in heat and fluid flow applications. Besides being an

alternative computational method on itself, this hybrid approach is particularly

well suited for benchmarking purposes, in light of its automatic error control

feature, retaining the same characteristics of a purely analytical solution. In

addition to the straightforward error control and estimation, an outstanding

aspect of this method is the direct extension to multidimensional situations,

with a moderate increase in computational effort with respect to one-

dimensional applications. Again, the hybrid nature is responsible for this

behavior, since the analytical part in the solution procedure is employed over

ali but one independent variable, and the numerical task is always reduced

to the integration of an ordinary differential system in this one single

independent variable.

The present chapter reviews the concepts behind the

Generalized Integral Transform Technique (GITI), as an example of a hybrid

method in heat transfer applications, which adds to the available simulation

tools, either as a companion in covalidation tasks or as an alternative

approach for analytically oriented users.
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2. FORMAL SOLUTION

As an illustration of the formal solution procedure, we consider

here a transient convection-diffusion problem of n coupled potentials

(velocity, temperature or concentration), defined in the region V with

boundary surface S, and including non-linear effects in the convective terms

as follows:

XEV, t i- O, k,e=1,2, ... ,11

(1.a)

with initial and boundary conditions given, respectively, by

Tk ( X ,O) = fJ x ), x E V (1.b)

[ak(x)+ !3k(x)kk(X) ~l]Tk(X,t) = <Pk(X,t,Tk)'

XES, t>Ü

(1.c)

where the equation operator is written as:

(1.d)

and n denotes the outward drawn normal to the surface S.

Without the convection terms and for linear source terms, i.e.

u(x, t, TI ) = O, P=P(x,t), and rp=rp(x,t), problem (1) becomes a class I linear

diffusion problem according to an earlier classification [1], for which exact
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analytical solutions were obtained through the ciassical integral transform

technique. Otherwise, problem (1) is not a priori transformable, and the ideas

in the generalized integral transform technique [2-6) can be utilized to

develop hybrid numerical-analytical solutions to this ciass of problems.

Following the torrnalisrn previously established for convection-diffusion and

purely diffusive non-linear problems [7-8), the appropriate auxiliary problems

are taken as:

XE V (2.a)

with boundary conditions

XES (2.b)

where the eigenvalues, J1k;' S , and related eigenfunctions, lfIkJ x ), are here

assumed to be known from application of also recently advanced

computational methods for Sturm-Liouville type problems [1,2). Problem (2)

then allows, through the associated orthogonality property of the

eigenfunctions, definition of the integral transform pairs below:

(3.a)

=
Tk( x.t ) = L KkJ X )Tkit), inverses

;=1

(3.b)
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where the symmetric kernels KkJ x) are given by:

(3.c,d)

The integral transformation of (1.a) is now accomplished by applying the

operator 1KkJ x )dv to yield, after using boundary conditions (1.c, 2.b):

i= ],2, ..., t >0,

k, e = },2, ...,11

(4.a)

The initial conditions (1.b) are also integral transformed through the operator

1wk( X )Kki( x tdv , to provide:

(4.b)

where,

(4.c)
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(4.d)

with

8 = {a,
IJ. 1,

for

for

i -:F- j

l=j
(4.e)

(4.f)

Equations (4) form an infinite system of coupled non-linear

ordinary differential equations for the transformed potentials, Tu I s. For

computation purposes, system (4) is truncated at the Nth row and column,

with N sufficientiy large for the required convergence. The formal aspects

behind the convergence to the infinite system solution as the truncation order,

N, is increased, have been investigated in [2]. The non-linear initial value

problem defined by eqs. (4) is likely to belong to a class of stiff ordinary

differential systems, especialiy for increasing values of N. Fortunately,

various special numerical integrators have been designed within the last two

decades, to this class of systems[9]. Once the transformed potentials have

been computed from numerical solution of system (4), the inversion formula

(3b) is recalled to reconstruct the original potentials Tk ( x, t ), in explicit formo
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3. COMPUTATIONAL PROCEDURE

A quite straightforward algorithm can be constructed as follows:

• The auxiliary eigenvalue problem is solved for the eigenvalues and related

normalized eigenfunctions, either in analytic form when applicable or through

the GITT itself [1,2].

• The transformed initial or boundary conditions are computed, either

analytically or, in a general-purpose procedure, through adaptive numerical

integration[9]. Similarly, those coefficients on the transformed O.D.E. system,

which are not depsndent on the transformed potentials, can be evaluated a

priori. For nonlinear coefficients, there are some computational savings in

grouping them into a single integrando

• The truncated O.D.E. system in then numerically solved through different

tools, depending on the type of problem under consideration. For an initial

value problem, the numerical integration is performed, for instance, through

subroutine DIVPAG[9], since the resulting system is likely to become stiff,

especially for increasing truncation orders. Boundary value problems can be

handled through subroutine DBVPFD[9], an adaptive finite-difference

program for first order nonlinear boundary value problems. Both subroutines

offer an interesting combination of accuracy control, simplicity in use and

reliability.

Since ali the intermediate numerical tasks are accomplished

within user prescribed accuracy, one is left with the need of reaching

convergence in the eigenfunction expansions and automatically controlling

the truncation order N, for the requested accuracy in the final solution. The

analytic nature of the inversion formulae allows for a direct testing procedure

at each specified position within the medium where a solution is desired, and

the truncation order N can be gradually decreased (or eventually increased),

to fit the user global error requirements over ali the solution domain.
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The simple tolerance testing formula employed is written as:

N

Ilji/ x lf;( t )
i=Ne = mas N

xej! -

T,( x; t ) + L lji/ x )TJ t )
i=!

(5)

where Te is a filtering solution, if eventually employed, and N* is decreased

from the value of N while E still fits the user requested global error, and then N

is changed to assume the value of N*.

4. FILTERING ANO REOROERING STRATEGIES

A major aspect in the practical implementation of this

methodology is lhe eventual need for improving the convergence behavior of

the resulting eigenfunction expansions. Within the context of those classes

of problems that may be handled exactly, convergence acceleration schemes

were proposed [1), essentially originated from the splitling-up of the original

partial differential system into simpler problems. However, the expressions so

developed are limited to special linear cases. Motivated by the developments

in the GITT, an alternalive approach based on integral balances was

proposed and different filtering schemes were employed throughout the

sparse literature on this methodology [2). The aim was to provide simpler

convergence enhancement procedures, in order to maintain the applicability

of the formal solution approach into the widest possible range of proposed

problems in heat and fluid flow, and to within a mild degree of analytical

involvement, for compatibility with the development of automatic solvers for
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partial differential equations in such fields. More recently [10], these ideas

were more closely examined and different convergence improvement

strategies were critically compared. While multiple successive filtering

proved to be the most efficient computationally, it was also demonstrated to

beco me progressively quite too involved for practical purposes, and not

necessarily uniformly effective over the whole solution domain.

One possible alternative for further improvement appears to be

the proposition of analytical filtering solutions, which present both space and

time dependence, within ranges of the time numerical integration path. For

instance, representative linearized versions of the original problem in a

certain time interval, after being exactly solved through the classical integral

transform approach, may more effectively partially filter the original problem

source terms, which are responsible for deviating the convergence behavior

from the spectral exponential pattern. Then, the filter can be automatically

redefined for the next time variable range, by prescribing a desirable

maximum value for the system truncation order, while still satisfying the use r

requested global accuracy targel. This so-called local-instantaneous filtering

(L.I.F.) strategy is therefore now preferred, as a possibly optimum scheme,

and still user-controllable, for enhancing convergence in eigenfunction

expansions [11). Also, the L.I.F. strategy indirectly introduces a quite

desirable modulation effect on the transformed ODE system. While the

single filter solution produces, in general, strongly stiff ODE systems,

requiring special initial value problem solvers, the L.I.F. solution yields, in

principie, non-stiff systems, which are readily solvable by standard explicit

schemes at much less computational cosI.

In multidimensional applications, the final integral transform

solution for the related potential is expressed as double or triple infinite

summations for two or three-dimensional transient problems, or a double

summation for a three- dimensional steady problem. Each of these
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summations is associated with the eigenfunction expansion in a

corresponding spatial coordinate, eliminated through integral transformation

from the partial differential system, and recovered analytically through such

expressions. From a computational point of view, only a truncated version of

such nested summations can be actually evaluated. However, the plain

truncation of these series, individually, to a certain prescribed finite order, is

certainly not an efficient approach and, to an extent, even a risky one. In this

way, some still important information to the final result can be disregarded,

while other terms are accounted for that have essentially no contribution to

convergence in the relative accuracy required. Therefore, for an efficient

computation of these expansions, the infinite multiple summations should first

be converted to a single sum representation, with the appropriate reordering

of terms, according to their individual contribution to the final numerical result.

Then, one would be able to evaluate a minimum number of eigenvalues and

related derived quantities, as many as required to reach the user prescribed

accuracy target. This aspect is even more evident in the use of the GITT,

when the computational costs can be markedly reduced through this

reordering of terms, which then represents a reduction on the number of

ordinary differential equations to be solved numerically in the transformed

system [10]. Since the final solution is not, of course, known a priori, the

parameter which shall govern this reordering scheme must be chosen with

care, and proved to be a good choice. Once the ordering is completed, the

remaining of the computational procedure becomes as straightforward and

cost-effective as in the one-dimensional case. In fact, except for the

additional effort in the evaluation of double and/or triple integrais, when

required to be numerically computed, finding a multidimensional solution

requires essentially the same order of CPU time as in a plain one-

dimensional situation. It is noticeable that the most common choice of

ordering strategy, based on the argument of the dominating exponential term,
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although not always in a monotonic fashion, offers a good compromise

between the overall convergence enhancement and simplicity in use.

However, individual applications may require more elaborate reordering that

accounts for the influence of nonlinear source terms in the ODE system, for

instance based on local linearization and dynamic reordering along the time

integration marching.

5. APPlICATIONS

The potential of the integral transform approach in dealing with

different classes of nonlinear problems in heat transfer is now briefly

illustrated. The examples selected include diffusion in irregular geometries

[12-18], here related to fin calculations, diffusion with coupled equations [19-

24], as formulated by the Luikov equations of drying, convection-diffusion in

the boundary layer formulation [25-29], demonstrated with a mixed convection

example, and convection-diffusion in the full Navier-Stokes formulation [30-

40], represented by natural convection in enclosures. Additional details on the

application of the method can be readily obtained from the original papers

that correspond to these topics, and/or from the compilations in [2,10], where

several other topics not presented here are also discussed.

5.1 Diffusion:- Irregular Geometries

We consider the two-dimensional heat conduction equation, for

steady-state and temperature-dependent thermal conductivity, written for a

longitudinal fin of variable profile, according to Fig. 1. The temperature at the

fin base is assumed uniform and heat losses through the fin tip are

disregarded. In dimensionless form, the problem formulation is given as [12]:
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~[K(e )ae(X ,n] +~[K(e )ae(X, n] = o
ay ay sx sx ' (6.a)

o < x < c, o < Y <E (X)

with boundary conditions

8(0,Y)=1; a8(X'Y)1 =0
aX x=c

(6.b,c)

ae(X, nI [ (. se ae J~= O; K(e) SlI1(X-+COS(X-
ay Y=Q aX ay Y=e(X)

+ Bie(X,E (X»=O
(6.d,e)

where the various dimensionless groups are defined by

l;")J T(x y)-T
X =-- 'Y=-'8( X Y)= ' ~

E o ' E o " Tb - T oo

(7)

and a is the local inclination of the variable profile.
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Figure 1. Geometry and coordinate system for a longitudinal fin with
variable profile

If the temperature-dependent thermal conductivity is

considered in the usual linear form

(80a)

in order to reduce the number of parameters to be studied, then the

dimensionless function K( 8) becomes

K(8) = 1 + be (80b)
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where,

(8.c)

Results are then obtained for the present application. The

automatic error control feature of the integral transform approach was first

reconfirmed through the case of a rectangular profile (E(X)=const.) and

constant thermal conductivity, which has a straightforward exact analytical

solution. As expected, the agreement was perfect to within the requested

relative error target (10.5).

Next, the case of a trapezoidal profile with constant thermal

conductivity was considered, which is represented by the following equation

X
E ( X ) = 1+ -( r - J )

C
(9.a)

where,

e f 1- r
r =- ·tanCi =--

e; ' C
(9.b,c)

The special case of a triangular fin [17] is then recovered by

letting r-70.

Table 1 illustrates the convergence behavior of the proposed

eigenfunction expansion for the average temperature, in the case of a

trapezoidal fin of constant thermal conductivity for different values of Biot

number, Bi, and aspect ratio, C. Also shown are the results from the classical
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one-dimensional formulalion for a Irapezoidal fin [18]. II is c1early noticeable

Ihallhe convergence rales are somehow improved for lower values of Bi and

higher values of C, since Ihen the X-componenl of lhe boundary normal

derivalive becomes less significanl. This componenl is not incorporaled in lhe

eigenvalue problem boundary condilion, and appears as a "source lerm" in

lhe syslem for lhe Iransformed polenlial, Iherefore affecling lhe convergence

rales, as usual in eigenfunclion expansion-Iype approaches. However, lhe

overall convergence behavior is slill quile outstanding, at least in the range of

lhe parameters, Iypical of extended surfaces applicalions, here considered.

When required, convergence acceleralion schemes can be recalled, eilher

Ihrough fillering solulions or inlegral balance procedures, with additional

analytical involvemenl. The results presented in Table 1 are achieved Ihrough

an user prescribed accuracy of 10.5 in the ODEs solver.

Table 1 also presents the c1assical one-dimensional fin

formulation [18], compared with the full two-dimensional formulation here

obtained. As expecled, lhe error increases wilh the Biot number, as the

lemperature gradients in the transversal direclion beco me more pronounced.

II is also of interest 10 observe the behavior of the Iwo-dimensional solution

with one single lerm in lhe eigenfunclion expansion (N=1). From lhe

malhemalicalpointofview.this solution is as simple as lhe classical one-

dimensional formulation, i.e. il is obtained essenlially from the solulion of a

single second order ordinary differenlial equation. Nevertheless, lhe error for

Ihis allernative approximale solulion (N=1) is beller behaved Ihan Ihal for lhe

classical one-dimensional solution. This behavior is even more noliceable for

higher values of Bi (=1.0) and/or C (=10.0), indicating that in lhe realm of

applicalions and for oplimizalion sludies of reduced cost, this approximate

solulion mighl offer a more reliable allernalive to the c1assical approach.
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Such aspects of convergence rates and relative accuracy are

also observable in graphical form, through Fig. 2, for the average temperature

distribution along the entire length of the fino Fig. 2 shows the convergence

behavior for the case C=3.0 and 8;=0.1, demonstrating the practically

coincidenl results, to lhe graph scale, for N~4. In addition, lhe results for one

single term in the expansion (N=1) are in very good agreement with the one-

dimensional solution, over the whole domain. Results were also obtained for

a longitudinal fin with concave parabolic profile, again for constant thermal

conductivity, defined by the following expression:

(10)

In reference [1]. the classical one-dimensional formulation was

employed in the solution of concave parabolic fins with negligible thickness at

the fin tipo In order to allow for critical comparisons with the present two-

dimensional results, the computations were performed with (=10.5, which was

verified to represent adequately the situation of r -7 O, or negligible heat

transfer area at the tipo Numerical results are then presented in graphical

form, to illustrate both the convergence rates and relative accuracy of the

approximate solutions in the case of a parabolic profile. Fig. 3 shows the

convergence of the eigenfunction expansion for the average temperature

along lhe fin lenglh, logether with lhe approximate one-dimensional solutions

with C=3.0 and 8i=O.1. The same trends observed for lhe Irapezoidal profile

are presént in Ihese comparisons for the parabolic geometry.
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Table 1. Convergence 01 the eigenlunction expansion and comparison with the
classical one-dimensional lormulation (C=3.0; r=1O-3; b=0 - trapezoidal lin)

Bi= 1.00

N

X=O.O X=0.750 X=1.875 X=3.0

1 1.0 0.5144 0.1483 0.0185

% error (1.672) (3.974) (9.445)

4 1.0 0.5067 0.1431 0.0171

7 1.0 0.5062 0.1428 0.0170

10 1.0 0.5060 0.1427 0.0169

(*) 1.0 0.4726 0.1195 0.0134

% error (7.073) (19.38) (24.42)

Bi = 0.10

N

X=O.O X=0.750 X=1.875 X=3.0

1 1.0 0.8465 0.6401 0.4711

% error (0.497) (1.303) (2.353)

4 1.0 0.8427 0.6357 0.4615

7 1.0 0.8424 0.6350 0.4606

10 1.0 0.8423 0.6348 0.4603

(*) 1.0 0.8407 0.6316 0.4571

% error (0.189) (0.508) (0.696)

Bi » 0.01

N

X=O.O X=0.750 X=1.875 X=3.0

1 1.0 0.9783 0.9462 0.9151

% error (0.077) (0.194) (0.312)

4 1.0 0.9776 0.9446 0.9126

7 1.0 0.9776 0.9444 0.9123

10 1.0 0.9775 0.9444 0.9122

(*) 1.0 0.9775 0.9442 0.9120

% error (0.005) (0.019) (0.027)
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Attention is now directed to the solution of the nonlinear

situation due to a temperature dependent thermal conductivity, for different

values of the governing coefficient, b. Table 2 illustrates the convergence

rates of the eigenfunction expansion for a trapezoidal fin with variable thermal

conductivity, with 8;=0.1, C=10 and b=O.01, 0.1, 1.0.

The average temperature results are in ali cases fully

converged to four digits with Nas low as 4. Also shown are the results for the

one-dimensional formulation, when the average value of the dimensionless

thermal conductivity is adopted (Kav=1 +bl2.), in the temperature range of the

problem. Clearly, the results from the single-term eigenfunction expansion

(N=1), offer an excellent approximation of the two-dimensional formulation,

with considerable accuracy improvement over the classical one-dimensional

approach, and even more noticeably for an increasing degree of nonlinearity.
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Table 1 (cont.) (C=10; r=10-3; b=0 - trapezoidal fin)

Bí= 1.00

N

X=O.O X=3.750 X=6.250 X=10.0

1 1.0 0.0267 0.0011 0.0000

% errar (0.755) (0.000) (0.000)

4 1.0 0.0264 0.0011 0.0000

7 1.0 0.0265 0.0011 0.0000
10 1.0 0.0265 0.0011 0.0000

(*) 1.0 0.0169 0.0005 0.0000

% errar - (-36.62) (-51.01) (-89.94)

Bí=0.10

N

X=O.O X=3.750 X=6.250 X=10.0

1 1.0 0.3052 0.1143 0.0118

% errar (0.246) (0.422) (0.943)

4 1.0 0.3045 0.1138 0.0117

7 1.0 0.3044 0.1138 0.0117

10 1.0 0.3044 0.1138 0.0117

(*) 1.0 0.3001 0.1113 0.0113

% errar (-1.668) (-2.584) (-3.683)

Bí= 0.01

N

X=O.O X=3.750 X=6.250 X=10.0

1 1.0 0.7588 0.6193 0.4408

% errar (0.068) (0.121) (0.220)

4 1.0 0.7583 0.6186 0.4408

7 1.0 0.7583 0.6185 0.4399

10 1.0 0.7583 0.6185 0.4398

(*) 1.0 0.7580 0.6182 0.4395

% errar (-0.039) (-0.048) (-0.068)

(*) One-dirnensional solution [18]
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Figure 2: Convergence of the integral transform solution for a trapezoidal
longitudinal fin
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Table 2: Convergence of the eigenfunction expansion for a trapezoidal fin
with variable thermal conductivity (Bi = 0.10; C = 10.0; r = 10.3)

b= 1.0

N X=O.O X=3.750 X=6.250 X=10.0

1 1.0 0.4295 0.1884 0.0219

% errar (0.116) (0.319) (0.922)

4 1.0 0.4290 0.1879 0.0218

7 1.0 0.4290 0.1878 0.0217

10 1.0 0.4290 0.1878 0.0217

(*) 1.0 0.3837 0.1758 0.0322

% errar (-10.56) (-6.390) (48.37)

b= 0.1

N X=O.O X=3.750 X=6.250 X=10.0

1 1.0 0.3194 0.1213 0.0126

% errar (0.220) (0.414) (0.800)

4 1.0 0.3187 0.1208 0.0125

7 1.0 0.3187 0.1208 0.0125

10 1.0 0.3187 0.1208 0.0125

(*) 1.0 0.3099 0.1182 0.0130

% errar (-2.761) (-2.152) (4.000)

b= 0.01

N X=O.O X=3.750 X=6.250 X=10.0

1 1.0 0.3066 0.1150 0.0119-
% errar (0.229) (0.437) (0.847)

4 1.0 0.3059 0.1145 0.0118

7 1.0 0.3059 0.1145 0.0118

10 1.0 0.3059 0.1145 0.0118

(*) 1.0 0.3011 0.1120 0.0115

% errar (-1.569) (-2.183) (-2.542)

(*) One-dimensional linearized solution for Kav
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5.2 Diffusion:- Coupled Equations

The approach here reviewed is now illustrated for simultaneous

heat and mass diffusion within a porous moist sheet, undergoing drying

through one boundary (or both) subjected to coupled convective-radiative

heat exchange with the environment. In order to reduce the number of

parameters to be studied, the assumption of constant transpor! coefficients

is adopted, and the nonlinear behavior is restricted to the radiation boundary

condition [23]. Recalling the system of equations proposed by Luikov [19], the

problem formulation in dimensionless form is written as [22]:

ae I (X, r) _ a 1e I (X, r) _ v ae 2 (X, r)
- o CJ\.O ,

ar ax- ar
o < X < 1, r> O

(11.a)

ae 2 (X, r) _ L a 2e 2 (X, r) _ L P a 2 e I (X, r)
-u o un "ar ax- sx:

O < X < 1, r> O
(11.b)

subjected to the initial conditions

(11.c,d)

and boundary conditions

dei 0,r) = de2( 0,r ) = 0, r > °
dX dX

(11.e,f)
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aell.r) -Biq[l-ell,r )]+
ax

(l-E )KoLuBiI/1U-e2( l.t )]+~c1>[ell.r )]= O, r> O (11.g)
C,.

_ ae2 ( i, r) p aeli, r) B' [1 _ Ll (i )] = O O=s': + 11 ax + /1/1 °2' r . r > (11.h)

where the function that represents the dimensionless radiation

heat flux is given by

The various dimensionless groups employed are defined as:

dimensionless temperature;

Ua - u( x.t )
e?( X, r) = . dimensionless moisture

- ua -11 *

X = 1. dimensionless space coordinate;
at

r = -? ' dimensionless time;e-
GIIlLu = - .Luikov number
a
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T-T ru -u*Pn = 8 s o, Possnov number; Ko = o , Kossovitch numberuo - u * c T, - To

B
. hC
1=-
q k dimensionless heat transfer coefficient; B. _ hll/f

111/---

kll/

dimensionless mass transfer coefficient

k
---J-'-, conduction-to-radiation ratio parameter
EeJ rt; (13.a-j)

The parameter C, governs the relative importance of the

radiative heat exchange at the boundary. Therefore, the larger the value of

Cr, less important the effect of radiation. The reference temperature for the

radiative heat transfer with the environment, Tr, is not necessarily the same

as the temperature of the surrounding air, Ts. Here, in order to reduce the

number of parameters to be studied, without loss of generality, we let T, = Ts.

Therefore, the function cP is rewritten as:

1 {l-[(l- To 6l1,r)+ To].J}
r-r.rt; TsJ T, (14)

The proposed approach was implemented on a Fortran code,

and various runs were performed for a rather complete parametric study. The

dimensionless times of interest were r = 0.1, 0.4, and 1.6. The truncation

orders were in ali cases N,M ::; 40, which were observed to be more than

sufficient for a relative error target of 10.5. The excellent convergence

characteristics of the eigenfunction expansions are illustrated in Tables 3 and

4 for temperature and moisture distributions, respectively.
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Table 3: Convergence behavior of temperature expansions.(Lu = 0.4; Pn =
1.0; E = 0.5; Ko = 1.0; Bim=Biq = 2.5; C, = 0.1; TJTs = 0.8)

8J(X,r)

1'=0.1

XlN 5 10 20 30

0.0 0.09005 0.08996 0.08996 0.08996

0.2 0.1155 0.1159 0.1159 0.1159

0.4 0.1987 0.1987 0.1987 0.1987

0.6 0.3547 0.3552 0.3552 0.3552

0.8 0.6130 0.6126 0.6126 0.6126

1.0 0.9712 0.9712 0.9712 0.9712

1'=0.4

XlN 5 10 20 30

0.0 0.5021 0.5021 0.5021 0.5021

0.2 0.5228 0.5228 0.5229 0.5229
0.4 0.5854 0.5853 0.5854 0.5854

0.6 0.6884 0.6885 0.6885 0.6885

0.8 0.8268 0.8267 0.8267 0.8267

1.0 0.9869 0.9869 0.9869 0.9869

1'=1.6

XlN 5 10 20 30

0.0 0.8928 0.8928 0.8928 0.8928

0.2 0.8976 0.8976 0.8976 0.8976
0.4 0.9118 0.9118 0.9118 0.9118

0.6 0.9341 0.9341 0.9341 0.9341

0.8 0.9629 0.9629 0.9629 0.9629

1.0 0.9961 0.9961 0.9961 0.9961
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Fixed truncation orders were selected, for demonstration

purposes N=M=5, 10,20,30 and 40, and numerical results presented for T =

0.1, 0.4, and 1.6. The excellent convergence rates are noticeable even for the

smaller values of T = 0.1, when the temperature field is practically fully

converged for N ::; 10 and the moisture profile requires N == 20 terms. For the

larger values of T, N == 5 provides in most cases four digits of accuracy. The

columns for N=40 provide a set of benchmark results for future reference.

The present approach was also employed to validate a

previously reported numerical solution [23] of both the linear (Cr=oo) and

nonlinear versions of this problem, with good agreement against the Crank-

Nicolson finite differences results reported in graphical form in [23]. As shown

in Figs 3.a,b, the present procedure with automatic global errar control, allows

for the safe validation of the previously reported approximate numerical

solution. For the uniform mesh size employed in [23], the temperature

predictions of that work are slightly less accurate than the moisture results.
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Table 4: Convergence behavior of moisture expansions (Lu = 0.4; Pn = 1.0; E

= 0.5; Ko = 1.0; BirrF'Biq = 2.5; C, = 0.1; T i/T« = 0.8)

(h(X, r)

r=0.1

X/N 5 10 20 30 40

0.0 -0.00823 -0.00935 -0.00930 -0.00930 -0.00930

0.2 -0.02104 -0.02004 -0.01999 -0.01999 -0.01999

0.4 -0.04409 -0.04494 -0.04483 -0.04482 -0.04482

0.6 -0.03471 -0.03228 -0.03203 -0.03201 -0.03201

0.8 0.1597 0.1589 0.1592 0.1592 0.1592

1.0 0.6275 0.6292 0.6294 0.6295 0.6295

r=0.4

XlN 5 10 20 30 40

0.0 -0.1225 -0.1223 -0.1223 -0.1223 -0.1223

0.2 -0.09483 -0.09439 -0.09431 -0.09430 -0.09430

0.4 -0.00395 -0.00381 -0.00374 -0.00373 -0.00373

0.6 0.1621 0.1625 0.1626 0.1626 0.1626

0.8 0.4072 0.4070 0.4071 0.4071 0.4071

1.0 0.7062 0.7064 0.7065 0.7065 0.7065

r=1.6

XlN 5 10 20 30 40

0.0 0.3142 0.3143 0.3143 0.3143 0.3143

0.2 0.3350 0.3351 0.3351 0.3351 0.3351

0.4 0.3958 0.3958 0.3959 0.3959 0.3959

0.6 0.4922 0.4923 0.4923 0.4923 0.4923

0.8 0.6176 0.6176 0.6176 0.6176 0.6176

1.0 0.7633 0.7633 0.7633 0.7633 0.7633
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Figure 3.a: Comparison of temperature distributions from present solution
and a finite differences solution, Ref. [23]. (Lu = 0.4; Pn = 1.0,
E = 0.5, Ko = 1.0, Bi,« = 2.5, Biq = 2.5, C, = 0.1, Tc/Ts = 0.2)
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Figure 3.b: Same as above for moisture potential profiles, Ref. [23]

5.3 Convection-Diffusion:- Boundary Layer Formulation

Among the various applications employing the boundary layer

equations, already treated through the GITI, we have selected some

illustrative results from fairly recent research on mixed convection in

channels, both with and without adoption of the Boussinesq approximation

[11,25]. Laminar mixed convection of a newtonian fluid developing within

vertical parallel plates is considered. The channel is assumed infinite in one

transversal direction (z) and semi-infinite in the longitudinal direction (x). The
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fluid enters the channel with uniform velocity and temperature profiles, and

the channel walls are subjected to a prescribed uniform temperature. The

classical Boussinesq approximation is invoked to model the buoyancy effect.

Within the range of validity for the boundary layer hypothesis, the vorticity

transport and energy equations in the streamfunction-only formulation are

written in dimensionless form, respectively, as [25]:

O<y<l,x>O (15.b)

where the streamfunction is defined in terms of the velocity components in

the longitudinal and transversal directions, x and y, respectively, as:

dlfl dlfl
-=u;-=-v
dy dX

(15.c,d)

The . inlet and boundary conditions, in terms of the

streamfunction, are given, respectively, by:

IfI(O,y) = y; e(O,y)=l, (16.a,b)

d? de
1fI(x,O) = O; ~(x,O) = O; ~, (x,O) = O,dy2 uy

x>O (16.c-e)
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1jI( x.I ) = 1;
dljla;( x,l)= O; 8( x,l ) = O, x>O (16.f-h)

The various dimensionless groups are defined as:
-x

Y=! ;
LI li

x=-=-; u==-; v=~; (17.a-d)
y,,· Y\\' Uo Lia

T -1'.,. R lIoY,,' V
8= e=--; Pr=- Pe = Re.Pr. (17.e,g)

To -T". v a

Gr = gfJY;,( 1'., - To) ., ,v-
(17.h)

Table 5 presents a convergence analysis of case B in (25)

(Gr/Re=131.76; Pr=O.72; parallel-plates channel), for the channel centerline

longitudinal velocity component, with a pronounced influence of the buoyancy

effect. The first three columns represent the integral transform results for

equal truncation orders (NC=NM) in the streamfunction and temperature

expansions, and are solely intended to build the confidence of the reader in

the convergence characteristics of the proposed approach. The actual

algorithm works as illustrated in the following column, named as adaptive,

and includes the automatically determined truncation orders achieved along

the integration path. Finally, the last column, obtained with a truncation order

still higher (NC=NM=80) than that required for the user requested global

accuracy (10-\ serves to confirm the adequacy of the adaptive procedure in

providing the four significant digits in the final tabulated solution. As can be

noticed, the highest truncation order results agree to within ±1 in the fourth

significant digit with the adaptive procedure final results, as expected from the

automatic error control scheme of the proposed approach. It is also clear that
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even at very low truncation orders (NC=NM=10), the integral transform results

are already quite representative of the fully converged results, sometimes

agreeing to within two, or even three, significant digits.

Some delay on the convergence rates is observable through

the region where the natural convection effects are magnified, but not

significantly enough to impede full convergence within a practical limit. As

expected in eigenfunction expansions-type approaches, convergence

improves in regions away from the channel inlet, to finally require few terms

as the fully developed region is recovered, when the filtering solution plays an

important role in reducing the influence of the equations and boundary

conditions source terms.

Table 5: Convergence analysis and adaptive procedure results for the
centerline axial velocity component (case B:Gr/Re=131.76
Pr=O.72).

NC/NM 10/10 30/30 60/60 ADAPTIVE 80/80
* NC u(x*, O)X NM

0.006 1.0454 1.0497 1.0505 34 57 1.0505 1.0507

0.026 0.60589 0.60782 0.60841 34 50 0.60841 0.60855

0.03 0.52747 0.52898 0.52947 34 33 0.52947 0.52959

0.04 0.39767 0.39815 0.39837 34 33 0.39836 0.39842

0.0432 0.37696 0.37716 0.37729 34 31 0.37728 0.37732

0.117 0.81274 0.81206 0.81191 34 31 0.81191 0.81188

0.3 1.3545 1.3544 1.3544 19 28 1.3544 1.3544

0.6 1.4857 1.4857 1.4857 15 17 1.4857 1.4857

1 1.4993 1.4993 1.4993 10 17 1.4993 1.4993

20 1.5000 1.5000 1.5000 5 17 1.5000 1.5000
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The present global error controlled results were then employed

in the benchmarking of previously obtained results from purely numerical

methods, such as the finite differences implementation of [29] for the same

mixed convection problem. Therefore, figures 4.a,b bring a comparison of the

fully converged integral transform results and the finite difference results of

ref. [29], for the longitudinal velocity component profiles.

1.e0 -~
uo / \

I.~O
// '\

\
I.OU / ,

/ \.~. ./.:i oso
" .-' \•........- - ~0.60 ,-: CIIH' .~ . Fin. Dif!

(UH' B Fi. Oifl \
OAO C(l~r A.. C/rT \

(/11 C 8 ·GITT
0.20

0.00
0.00 0.20 0 .• 0 0 .e0 0.80 1.00

Figure 4.a - Comparison of integral transform and finite differences [29]
results for the axial velocity component profile at x = 0.026
(case A: Gr/Re = 13.176 and case B: Gr/Re = 131.76).

Figure 4.a is associated with cases A (GrlRe = 13.176) and B

(Gr/Re = 131.76), at the longitudinal location X· = 0.026, while figure 4.b

represents the cases B (Gr/Re = 131.76) and O (Gr/Re = 41.667), for
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x = 0.117. In both cases, the overall agreement is quite satisfactory, but it is

also noticeable that the discrete method results loose adherence, to some

extent, in regions of increased velocity gradients as the natural convection

effects beco me more marked, inducing some need for an adaptive

remeshing/refinement procedure in such implementation. While the finite

differences approach can be significantly improved through such a scheme, it

is also true that a price has to be paid on additional development effort, on

both the analysis and computational phases of this possible enhanced

implementation of a fully discrete method.

uo .- <,• .
I.~O \/.-' \
1.00 .

/" \.>
~..--

'"' 0.80
..':! \~

Case D - GITT

0.00 • ChC D Fin. Diff.
,

Case B . GITT \
0 .• 0 • Case B - Fin. Dtn.

~

0.20
\

0.00
0.00 O.~O 0 .• 0 0.60 0.80 1.00

Figure 4.b - Comparison of integral transform and finite differences [29]
results for the axial velocity component profile at x = 0.117
(case B: Gr/Re = 13.176 and case O: Gr/Re = 41.667).
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5.4 Convection-Diffusion:- Navier-Stokes Formulation

We consider a square air-filled enclosure, with differentially

heated lateral walls, and insulated top and bottorn walls. Buoyancy effects

are taken into account through the Boussinesq approximation, under laminar

flow regime. Benchmark results for the steady-state situation were

established through integral transformation in [35,36], and the transient

behavior of the coupled heat and fluid flow phenomena was also investigated

[36], for different values of the Rayleigh number, Ra.

The governing equations are the vorticity transport equation in

streamfunction-only formulation [30], and the associated energy equation,

which in dimensionless form are given by:

o < x <1, 0< y < 1, t » O (18.a)

O < x <1, 0< y < 1, t » O (18.b)

with initial and boundary conditions

T(x,y,O)=ljf(x,y,O)=O; OS:.xs:./ e OS:.ys:./

dljl
ljI=-=O;ar

(18.c,d)

T = 1; .\'=0 (18.e-g)
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T =0;
dl/f

I/f=-=O;
dx

dl/f
1/f=a;=0;

dl/f
1/f=a;=0;

x=l (18.h-j)

dT = O.
dy ,

dT
-=0;
dy

y=O (18.k-m)

y=l (18.n-p)

where the Rayleigh number is defined as:

Ra = g f3 (T" - Te ) Li
(xV

(19)

and L is the enclosure height and length, while Th and Te are the hot and cold

wall temperatures, respectively.

Table 6 illustrates some of the benchmark results obtained for

the steady-state solution, in this case for Ra=106
, compared against

previously reported purely numerical solutions, as detailed in [35]. The

agreement is indeed excellent, reconfirming some of the most recent and

careful benchmarking efforts available in the literature, even for the slower

converging Nusselt number expansions.
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Table 6 - Comparison of steady-state benchmark results for natural
convection in a square cavity (Ra = 106, Pr=0.71).

GITT Vahl Davis[ Saitoh & Hortmann Lê Querê [40)

37) Hirose [38) et aI. [39)

I\VMEDI
16.39 16.32 16.379 NA 16.386

I\VMAX I 16.81 16.750 NA NA 16.811

0.151,0.547 0.151,0.547 0.150, 0.547
x,y

64.83 64.63 64.886 64.8367 64.83
UMAX 0.850 0.850 0.8505 0.85036 0.850

Y

220.6 219.36 220.47 220.461 220.6

VMAX 0.0379 0.0379 0.03783 0.03887 0.038

x

~ 8.825 8.800 8.7956 8.82513 8.825
Nu

8.825 8.799 8.7989 8.82513 8.825
Nu 1/2

8.826 8.817 8.8487 8.82513 8.825

NUa
17.54 17.925 17.140 17.536 17.536

NuMAX 0.0390 00378 0.0473 0.03902 0.039

Y NA0.9794 0.989 1.015 0.9795

1 1 1 1
NUMIN

y

NA - Not Available
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Figures 5.a,b show a comparison of the transient integral

transform results against a finite elements simulation [41] at different

dimensionless times for, respectively, temperature and vertical velocity

component distributions along the longitudinal coordinate, with Ra = 1rt.
Again, the agreement is quite reasonable to the graph scale

within the transient region, with some more noticeable deviations as the

steady-state is approached, due to some error propagation effect in the

purely numerical solution.
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Figure S.a - Comparison of transient temperature distributions at the cavity
midplane (y=1/2) by integral transforms [36] and finite elements
[41], (Ra = 1rt).
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Figure S.b - Comparison of transient vertical velocity component (v) at the
cavity midplane (y=1/2) by integral transforms [36) and finite
elements [41), (Ra = 10\

Figure 6 shows the comparative transient behavior among the

overall Nusselt numbers for different Rayleigh numbers, Ra = to'. 104 and

1(Í, as obtained from fully converged integral transform results, to the graph

scale. As the Rayleigh number increases, steady-state is reached after some

oscillatory behavior on the overall Nusselt numbers, due to internal flow

waves developed at early transient stage. As Ra is further increased, this

phenomena leads to flow instabilities that restrict the system in reaching a

fully steady pattern.
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Figure 6 - Transient behavior of the overall average Nusselt number in a
square cavity for different Rayleigh numbers ( Ra = to', 1(/ and
10\

Algorithm optimization schemes should then allow for the

employment of the integral transform approach in the analysis of unstable

heat and fluid flow phenomena, with the quite desirable automatic error

control feature, essential for the discrimination between numerical and

physical oscillations in the final solution patterns.
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6: CONCLUSIONS

Future research needs are very closely associated with the

development of mixed symbolic-numerical computation, which offers a very

adequate development platform for hybrid approaches, allowing for the

automatic computer derivation of ali the analytical steps in the procedure,

followed by the numerical tasks required. The only drawback in such class of

methods, due to the considerable amount of analytical work usually required,

would then be eliminated to a reasonable extent, and even, allow for

automatic program generation strategies. Such aspects are better

envisioned within new books that were recently made available [11,42).
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