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RESUMO 

Neste trabalho é apresentado um modelo estatístico para a 

distribuição de incrementos de velocidade de vento e temperatura dos dados 

de turbulência medidos na camada limite superficial atmosférica sobre a 

floresta amazônia, em uma torre de micrometeorological instalada na 

Reserva Rebio-Jaru (10o 04' S; 61o 56' W) durante o LBA (Large Scale 

Biosphere Atmosphere Experiment in Amazonia), campanha da estação 

úmida. Os dados foram medidos usando um anemômetro sônico 3D 

Campbell e um termômetro Campbell de resposta rápida localizados a uma 

altura de 66 m (a copa da floresta tem uma altura média de 35 m, mas 
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algumas árvores podem alcançar a altura de 45 m), amostrados a uma taxa 

de 60 Hz. O objetivo desta investigação é detectar propriedades não 

extensivas do campo turbulento em um ambiente peculiar. Para isto, foi 

calculada a função de densidade de probabilidade (PDF) para os incrementos 

da velocidade de vento Vr(x) = V(x) - V(x+r) (e incrementos de temperatura) 

em diferentes escalas de comprimento r. Os resultados preliminares mostram 

alguma evidência de que o modelo termoestatístico não extensivo proposto 

por Tsallis (1988) fornece uma teoria simples para explicar o comportamento 

estatístico da turbulência desenvolvida. Também foi investigada a relação 

entre intermitência e não extensividade usando um parâmetro simples q, a 

partir da termoestatística de Tsallis. Os resultados para os sinais turbulentos 

de velocidade do vento medidos ao nível de 66 m concordaram bem com o 

modelo de Tsallis, mas para a temperatura mostram alguma discrepância 

com relação ao modelo proposto. São apresentadas discussões físicas para 

explicar os resultados. 

 

 

ABSTRACT 
We present a statistical model for the distribution of increments 

of wind velocity and temperature of turbulence data measured in the 

atmospheric surface layer above the Amazonian forest, on a 

micrometeorological tower in Rebio-Jaru Reserve (10o 04' S; 61o 56' W) 

during LBA (Large Scale Biosphere Atmosphere Experiment in Amazonia) wet 

season campaign. The data were measured using 3D Campbell sonic 

anemometer and a Campbell fast response thermometer located at a height 

of 66 m (the forest canopy has a mean height of 35 m; but some of the higher 

tree branches may reach the height of 45 m), at a sampling rate of 60 Hz. The 

goal of this investigation is to detect noextensivity properties of the turbulent 

field in such a peculiar environment. To do this we calculate the probability 

density function (PDF) for wind velocity increments Vr(x) = V(x) - V(x+r) (and 
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temperature increments) at different length scales r. The preliminary results 

show some evidence that the nonextensive thermostatistics modelling 

proposed by Tsallis (1988) provides a new and simple framework for 

explaining the statistical behavior of fully developed mechanical turbulence. 

We also investigate the relationship between intermittency and nonextensivity 

using a single parameter q, from Tsallis thermostatistics. The results of the 

wind velocity turbulent signals measured at the level of 66m show a very good 

agreement with the Tsallis model but the temperature signals show some 

discrepancy with respect to the proposed model. Physical discussions are 

proposed to explain our results.  

 

 

1. INTRODUTION 
Turbulence is a very important phenomenon in the transport 

processes in flows having high Reynolds number, as it is the case for most of 

the situations in the atmospheric surface boundary layer (Monin and Yaglom, 

1971; Tennekes and Lumley, 1972). 

Some significant progresses have already been made on the 

description of many of the statistical characteristics of the turbulent processes 

(Frisch, 1995; Sreenivassan and Antonia, 1997). An important component of 

them is expreessed by the hypotheses formulated by Kolmogorov in 1941 (K-

41: Monin and Yaglom, 1971) and in 1962 (K-62: Kolmogorov, 1962; 

Kraichnan, 1991; Frisch, 1991; Van Atta, 1991) which allows to explain many 

fenomenological aspects of the spectral characteristics of the developed 

turbulence (Van Atta, 1991). In spite of this, they fail in providing solid 

theoretical basis to explain some impotant features of the turbulence such as 

the small scale distribution of the dissipation rate of turbulent kinetic energy, 

and the intermittency (Kraichnan, 1974; Lumley, 1992; Nelkin, 1992; Katul et 

al., 1994). 
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One of the methods to study the statistical laws of the 

turbulence in its smaller scales is based on the analyses of the probability 

density functions (PDFs) of the differences between turbulent variables 

separated by a distance r, such as the longitudinal wind speed component, u, 

the vertical component, w, and the temperature, T, (Antonia et al., 1984; 

Yakhot, 1989; Kraichnan, 1991; Castaing et al., 1990; Katul et al., 1994; Chu 

et al., 1996). These studies provide a better understanding of the nature of 

intermittency phenomenon in the small scale of the turbulence, and help to 

explain some of the observed differences between the fluctuations fields of 

wind speed and scalars. Besides, they permit obtaining better information 

about the distribution of dissipation rate of turbulent kinetic energy. 

PDFs are calculated through the statistics of differences of 

speeds (or other turbulent variables) at different scales r. As in many physical 

systems that depend on the dynamic evolution of a great number of sub 

systems coupled in a non linear way, the turbulent energy cascade makes the 

statistical moments of the variables behave according to a potency law in r. 

For high values of the Reynolds number, there is a huge separation between 

the scale of production of turbulent kinetic energy (integral scale, L) and the 

scale of dissipation (microscale of Kolmogorov, η). Besides, in the greatest 

scales, PDFs are usually normal but, far away from the integral scale length, 

they are strongly non-Gaussian (Kevlahan and Vassilikos, 1994), which 

express an important characteristic of the intermittent phenomenon. Although 

several authors have tried to determine the best fitted function with respect to 

turbulence PDFs (Sinai and Yakhot, 1989; Castaing et al., 1990; Kraichnan, 

1991; Frisch, 1995; Sreenivasan and Antonia, 1997), there is, still, a lot of 

disagreement concerning the best fitted function (Castaing et al., 1990, Chu et 

al., 1996), particularly for temperature PDFs (Antonia et al., 1984; 

Balachandar and Sirovich, 1991; Jaberi et al., 1996). 

In this work, a comparative study of modeling of the statistical 

behavior of the developed turbulence will be presented based on the 
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nonextensive thermodynamics procedure proposed by Tsallis (1988). We 

used data which were measured above the Amazon Forest in Rondônia, 

under two different atmospheric stability conditions: a stable one (for night 

situations) and other unstable (for strong convection situations). So, were 

investigated the PDFs of variables w, u and T. 

 

 

2.THEORY 

Based on the scaling properties of multifractals, Tsallis (1988) 

has proposed a generalization of Boltzmann-Gibbs thermostatistics by 

introducing a family of generalized nonextensive entropy functionals ]p[Sq  

with a single parameter q. These functionals reduce to the classical, extensive 

Boltzmann-Gibbs form as 1→q . 

Optimizing ]p[Sq  subject to appropriate constraints (Tsallis 

et al, 1995), we obtain the distribution 

 

q
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In the limit of 1→q , we find the Gaussian distribution. The 

above distribution would provide one of the simplest and most accurate model 

for handling the PDF problem. To show this, we stay in the context of fully 
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developed turbulence )vx( r≡ . From equation (1), we can easily obtain 

the second moment  
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and the flatness coefficient (kurtosis) 
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3. EXPERIMENTAL DATA 
The above mentioned turbulence statistical model was tested 

with data obtained during an intensive micrometeorological campaign which is 

part of the wet season LBA (Large Scale Biosphere Atmosphere Experiment 

in Amazonia) project. The experiment was carried out during the months of 

January to March 1999. Measurements were made simultaneously at three 

different heights in a micrometeorological tower located in the Biological 

Reserve of Jaru (Rebio Jaru: 10º04'S 61º56'W). The fast response wind 

speed measurements, sampled at a 60 Hz frequency, were made using three-

dimensional sonic anemometers (Campbell Scientific Inc, model CSAT-3-L60) 

and three thermometers (Campbell Scientific Inc, model CA27). 

During the experiment, the state of the atmosphere was 

characterized by the existence of strong convective activity in the diurnal 

period with isolated rain events. Also, during the experimental period, the 

ZCAS (Convergence Zone of Southern Atlântico) was active above the 

brazilian State of Rondônia. The experimental site was characterized by the 

existence of reasonable fetch conditions. The area where the tower was built 
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is surrounded by the Amazon Forest in a radius of at least 800m around the 

tower. The topography of the area was not totally homogeneous, since at the 

southern and eastern sides of the tower there are small hills with heights of 

some dozens of meters. More information on the variability pattern of the main 

micrometeorological variables during the period of the experiment is 

presented by Sá et al. (2000). Culf et al. (1996) presented a discussion of the 

micrometeorological characteristic of the Rebio Jaru site area during the dry 

season. 

 

 

4. RESULTS AND DISCUSSION 

In this work we used turbulent temperature and vertical and 

longitudinal wind velocity data which were separated in two main classes 

according to the two main atmospheric stability regimes: unstable and stable. 

The PDFs were obtained using statistical calculations which 

started from relationships such as ∆u u x u x rr = − +( ) ( ) , for the the 

variables u,w e T. This provides the difference between two measurements of 

a same variable, separated by a distance r. 

In spite of the fact that this is a controversial subject, (Kaimal et 

al., 1972; Srenivasan and Antonia, 1997), we accepted the assumption of 

frozen turbulence which is expressed by the well known Taylor's Hypothesis 

(Gledzer, 1997) to obtain length distance intervals from time intervals: 

tUr ∆= , (in which U  is the mean velocity of the flow which forces the 

measurement instruments). This procedure has been used successfuly by 

authors as Katul et al (1994) to analyse inertial subrange turbulent fluctuations 

of micrometeorological variables. 

To arrive to a better understanding of the environmental 

processes which eventually disturb the PDFs´ shapes, we have studied data 

from unstable and stable conditions data in separated analyses. This 
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procedure is particularly suited for Amazonian forest turbulence studies as 

was demonstrated by Fitzjarrald and Moore (1990) and Fitzjarrald et al. (1990) 

in their studies about spectral characteristics above and below canopy under 

stable and unstable conditions, respectively. 

This section is divided in two parts: the first concerns the 

unstable regime and the second concerns the stable one. In both analyses we 

discuss the main characteristics of the PDFs of wind velocity and temperature 

fluctuations 

In order to better contrast departures from Gaussian 

distributions in all variables, the PDFs are normalized using the standard 

deviation of the measured flow variable as proposed by Chu et al. (1996). We 

perform, also, calculations of the third moment (skewness) and the fourth 

moment (kurtosis or flatness factor) to better understand the intermittency 

effects on the PDFs in homogeneous and isotropic turbulence. This seems 

particularly important for the PDFs of the scalar variables which depict a clear 

tail-shape which is less evident in the PDFs of velocity fields (Chu et al., 

1996). 

 

 

4.1. Unstable Regime 
To carry out the discussion concerning PDFs in unstable regime 

we present in table 1 calculations of skewness and kurtosis of variables u, w 

and T, for each one of the following time-intervals: 

s,,,.t 20020220=∆ . 

To do this we started from the equations (1)-(3) and used 

kurtosis to fit the Tsallis distribution in each one of the time intervals already 

mentioned. 

Under the unstable regime all experimental results for u and w 

are in good agreement with Tsallis´ theoretical model, as shown in figures 1 

and 2. 
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  s.t 20=∆

 
st 2=∆  st 20=∆  st 200=∆

 

Comp. u SKEWNESS 0.0239 -0.1382 0.3695 0.2269 

Comp. u KURTOSIS 8.5180 6.6942 4.0291 2.6083 

Comp. w SKEWNESS 0.1239 0.7037 0.1137 0.5309 

Comp. w KURTOSIS 9.3302 8.6836 5.4066 4.1413 

Temp. SKEWNESS -0.0408 0.0075 0.1970 -0.2945 

Temp. KURTOSIS 13.8663 8.7726 4.2830 3.1052 
 

Table 1: Values of the statistical properties of u, w and T variables in each analysed 
time interval (Data from 13:05 Hs to 13:35 Hs). 

 

 

 

 
Figure 1: Probability density functions of vertical wind velocity w, from data measured 

from 13:05 to 13:35 Hs (local time). The experimental PDFs were obtained for 

s,,,.t 20020220=∆ . The theoretical PDFs are in solid lines. 
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A physical phenomenon which could introduce some 

discrepancy on the experimental PDFs´ shapes when compared to the 

theoretical ones is probably due to the presence of coherent structures 

(Högström and Bergström, 1996) at the scales from 20 to 200s. As is pointed 

out by these authors, coherent structures are particularly active in flows near 

forest canopies where the vertical wind profile has a inflexion point, as is the 

case of Amazon forest. It is interesting to stress that Gannabathula et 

al.(2000) analysing turbulent data measured at the Rebio-Jaru experimental 

site have detected coherent structures near the scale of 200s by means of 

wavelet transform signal analysis, (this for u, w and T variables). So, this 

could explain the anomalous PDFs shapes we have obtained, even for u 

signals (particularly for the 200 s scale). Figure 2 shows u-PDF in 13:05-13:35 

Hs, local time. 

 

 
Figure 2: As figure1, except it is for u wind velocity component. 
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In results for temperature, PDF curves presented a more 

skewed shape when compared to the wind velocity (figure 3) and so, they 

have shown some discrepancy with respect to the theoretical function. 

According to Chu et al. (1996) this could be due to "like-ramp" coherent 

structures effects which have been detected in turbulent scalar signals by 

authors such as Antonia et al. (1984). These kind of patterns were also 

observed on the shape of fast response temperature data measured at Rebio-

Jaru Site tower. 

 

 
Figure 3: As figure1, except it is for temperature to the 13:05 Hs. 

 

 

3.2.  Stable Regime 
In this regime, we have also observed very good agreement 

between the experimental results and the PDF model of the wind components 

u and w,  even for  P(Vr)  values  located  far  from Vr = 0, diversely from the  
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results obtained under unstable conditions. This suggests that some 

anomalous PDFs patterns obtained far from Vr = 0 are probabily due to the 

action of mesoscale organized motions on the wind flow which generate 

updrafts and downdrafts motions over the experimental site and disturb in 

some way the shape of the PDF curves. This kind of distorsion in PDFs 

shapes, induced by convective motions was already detected by Baerentsen 

and Berkowics (1984). The best agreement between the theoretical and the 

PDFs of u and w was observed at 5:00 Hs local time data (even for the 200 s 

t∆  interval) just in a situation in which stability condition is the strongest. To 

show the shapes of PDF under stable conditions we present figure 4 (for u), 

figure 5 (for w) and 6 (for T) in which are depicted both theoretical and 

experimental PDFs. The wind velocity experimental PDFs show a good 

agreement with the theoretical densities. This is probabily due to the fact that 

convective motions are absent of the nocturnal surface layer. Regarding the 

temperature PDFs under stable conditions, two main aspects of the results 

could be stressed, concerning the agreement between the experimental data 

and the theoretical curves: 

1) The fit of temperature PDF is best under stable conditions when compared 

to unstable ones; 

2) The fit of temperature PDF is not as good as the u and w PDFs. 

These results probabily have emphasized that there are some 

physical differences which determine distinctly the velocity and temperature 

PDFs. Some discussion about the physical differences between the character 

of temperature and wind velocity turbulent fluctuations is made by Monin and 

Yaglom (1971) which have shown that in the atmospheric surface layer, the 

universal functions calculated from nondimensional statistical parameters of 

the turbulent fluctuations of the wind speed are not exactly the same as 

scalar.  
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One important question to be mentioned is the possible 

Gaussian character of the PDFs curves. According to Chu et al. (1996), 

temperature PDFs would be Gaussian under stable conditions. Indeed, on 

Amazon forest data this feature was observed more clearly at 5:00 Hs (local 

time), when the atmosphere reaches its state of maximum stability. However, 

this was not true for curves obtained under unstable conditions. 

 

 

 
 

Figure 4:  As figure 1, except it is for u wind velocity component to the 05:05 Hs 
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Figure 5: As figure 1, excepts it is for w wind velocity component to the 05:05 Hs. 

 

 

We observed an other important distinction among the results 

under stable and unstable regimes for u, w and T variables. Under stable 

regime all values obtained for kurtosis are lower than the ones obtained for 

unstable conditions, as we can observe at the table 2. This is probably due to 

the fact that intermittency is more active during diurnal situations, when 

unstable regime prevails. Under this situation, motions with organized flow 

such as updrafts and downdrafts (Fitzjarrald et al., 1990) or coherent 

structures (Katul et al., 1994) could determine the enhancement of intermittent 

fluctuations. In stable regime, as Chu et al (1996) pointed out, the lower 

kurtosis values can be associated to effects of (eventual) gravity waves, 

phenomena already observed near the canopy of Amazon forest (Fitzjarrald 

and Moore, 1990). 
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  s.t 20=∆

 
st 2=∆

 
st 20=∆

 
s.t 20=∆

 

u comp. SKEWNESS -0.1041 0.0213 0.0529 0.0910 

u comp. KURTOSIS 5.5184 4.0534 3.2271 2.9241 

w comp. SKEWNESS -0.0434 -0.1473 -0.1331 0.0999 

w comp. KURTOSIS 6.1239 4.2432 3.6030 3.0530 

Temp. SKEWNESS -0.2422 -0.4296 -0.0560 -0.1726 

Temp. KURTOSIS 7.5630 5.4723 2.9908 2.9533 

 
Table 2: Values of the statistical properties of u, w and T variables for each analysed 
scale (Data from  05:05 Hs to 05:35 Hs). 
 

 

 

 

 
Figure 6: As figure 1, except it is for temperature at 05:05 Hs. 
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4. CONCLUSIONS 

We have demonstrated sucessfully the applicability of Tsallis 

nonextensive thermostatistics in modelling the statistical behavior of fully 

developed atmospheric turbulence in the inertial subrange. 

The probability density functions were calculated with data 

measured above and inside the Amazon forest during the wet season 

Experiment LBA Campaign. 

To perform the statistical fittings, we used wind velocity 

components u and w and temperature data under unstable and stable 

conditions, for each one of the following time intervals 

s,,,.t 20020220=∆ . 

The best fitted results have been obtained from wind velocity 

data under stable conditions. This is probably due to the fact that coherent 

structures and other organized motions in the surface boundary layer such as 

updrafts and downdrafts are stronger during diurnal situations, when unstable 

conditions are dominant. 

Temperature PDF functions are not so well fitted against 

theoretical curves than wind velocity ones. This is probably due to the fact that 

temperature fluctuations present some physical characteristics which are 

different than the ones of the wind velocity field. 
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