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Abstract
This article develops a variational formulation for the relativistic Klein-Gordon equation. The main results are

obtained through a connection between classical and quantum mechanics. Such a connection is established
through the definition of normal field and its relation with the wave function concept.
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1 The Newtonian approach

About the references, this work is based on the book ” A Classical Description of Variational
Quantum Mechanics and Related Models” [5], published by Nova Science Publishers. Details
on the Sobolev Spaces involved may be found in [1, 4]. For standard references in quantum
mechanics, we refer to [3, 6, 7] and the non-standard [2].

Finally, we emphasize this article is not about Bohmian mechanics, even though the David
Bohm work has been always inspiring.

In this section, specifically for a free particle context, we shall obtain a close relationship
between classical and quantum mechanics.

Let O C R? be an open, bounded and connected set set with a regular (Lipschitzian)
boundary denoted by 9€2, on which we define a position field, in a free volume context, denoted
by r:Q x [0,7] — R3, where [0,7] is a time interval.

Suppose also an associated density distribution scalar field is given by (por) : Q x [0,T] —
[0,400), so that the kinetics energy for such a system, denoted by J : U x V' — R, is defined as

T (X (X
T R N

subject to
/ p(r(x,t))y/g dx =m, on [0,T],
Q

where m is the total system mass, ¢t denotes time and dx = dx1 dzry dzs.

Here,
U = {rewW"?Qx[0,7T]) : r(x,0) = ro(x)
and r(x,7T) =r1(x), in Q}, (1)
and
V = {plr) € (0, TEW2(Q)) « re U},
Also
_ Or(x,t)
gL = oy
and
g = det{gx}.

For such a standard Newtonian formulation, the kinetics energy takes into account just the
tangential field given by the time derivative
or(x,t)
ot

At this point, the idea is to complement such an energy with a new term which would
consider also the variation of a normal field n and concerning distribution of curvature, such

that 5 .
o)

ot

So, with such statements in mind, we redefine the concerning energy, denoting it again by
J:UxVxV; =R, as

=0, in Q x [0,7].
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t t
J(r,n,p) = / / 81" ’; ) ar(x )\f dxdt
+- / / R\/g dxdt, (2)
2 Jo Ja
where v > 0 is an appropriate constant,

or(x,t)

8k = Dk
g = det{gi;},
9ij = 8&i - 85>
R = g R,
Rjk - R;@k;

Riyy =t by,

b 1 0 (Velon(r))

1] — _\/m a(]f] - 8i»
b; = gilblja

and,

{g7} ={g;;} 7"

Vi, j, k,1 € {1,2,3}.

subject to
n(r) -n(r) =1, in Q x [0,T7,
n(r) - % =0, in Q x [0,7],
and
/ p(r(x,t))y/g dx =m, on [0,T].
Q
Here

Vi={n(r) e L*(Qx[0,T]) : reU}.

Thus, defining ¢ such that
p
6l =1/ —
m

and already including the Lagrange multipliers concerning the restrictions, the final expression
for the energy, denoted by J : U x V x V; x V5 x [V3]2 = R, would be given by

Jemo B = 5 [ ' [ mloteteinp - 0 /G dxar
X/T/R\/g dxdt
—m/ 0 ([ 16w vaix-1) a

+(A,n-n—1)p2

)
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where,

U = {rewWh?Qx[0,T]) : r(x,0) = ro(x)
and r(x,T) = ri(x), in Q}, (4)

V = {é(r) € L*([0,T;; W"*(;C)) : r € U},
Vi={n(r) € L*(Qx [0,T]) : re U},
Vo = L*([0,T7),
Vi = L2(Q x [0, 7)),
and generically

T
(f.h) 12 :/0 /th\/g dx dt,Yf,h € L*(Q x [0,T]).

Moreover,
_ Or(x,t)
gL = 789%
g = det{gi; },
9ij = 8i " 8j,
R= ginija
Rjk = R;zky
R;‘kl = blz‘ b;k,
9 (¢(r)n(r))
by = - g,
J al‘j g
i il
bj =g blja
and,

{97} = {95},
Vi, j, k,l € {1,2,3}.
Finally, in particular for the special case in which

r(x,t) ~ x,
so that
or(x,t)
~ 0,
ot
and 9
r
n-— ~0,
ot
we may set
n=oc,
where ¢ € R3 is a constant such that
c-c=1,
and obtain
gL ~ €L,
where

{ely €2, e3}
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is the canonical basis of R3.
Therefore, in such a case,

) [ s f g

Hence, we would also obtain

J(I‘, n, d)? E7 )\17 >\2)/T

Q

This last energy is just the standard Schrodinger one in a free particle context.

2 A brief note on the realistic context, the Klein-Gordon equation

Denoting by ¢ the speed of light and
di* = Adt* — dX? — dX3 — dX3,

in a relativistic free particle context, the Hilbert variational formulation could be extended, for
a motion in a pseudo Riemannian relativistic C' class manifold M, where locally

M ={r(u) : ueQ},

u= (U1,UQ,U3,U4) S ]R47

and
r:QcR* 5 R?

point-wise stands for,
r(u) = (ct(u), X1(u), Xa(u), X3(u)),
to a functional J; where denoting p(r) = |R(r)|?, the mass differential is given by
p(r) R(r)
7/_72/2\/ g1 du = %2/ oy Y 9l dw,
the semi-classical kinetics energy differential is given by

6r( ) 6r( )dm

dm =

dE. =

ot ot
dt
- ‘<%) dm
= —(c® —*) dm, (6)

so that

dE. = —c*(\/1 —v2/c2)|R(r)|*\/|g] du,
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and
Ji(r,R,n) = —/dEc—l—,y/R\Mg\ du
Q 2 Ja
= & [ RWEVI= 2/ Vgl du
Q
+3 [ Rlgl du, @

0

subject to

/Q R@)2 /gl du = m,

where m is the particle mass at rest.

Moreover,

where

o _ oon
ot ot ot
ar
_ ot
ot
at
or 1

TN ¥

and
n(r) -n(r) =1, in Q.

Where ~ is an appropriate positive constant to be specified.

Also,
Or(u)
gk = up
g = det{gi;},
9ij = &i " 85>

where here, in this subsection, such a product is given by

3
Y- -zZ= —Yoc + Zyizia vy - (y07y17y27y3)7 Z = (20721722723) S R47
i=1
R = g" Ry,
Rjr = R;ikv

it gl gk
Ry = b; by,

B 1 9(R(r)n(r)) '
bij = ~Jm o, “ 8is

b, = 9" by;,
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and, -
{97} = {95},
Vi, g, k, 1 € {1,2,3,4}.

Finally,
0X1\? [0X2\? [0X5\?
v=|| =) +(==) +(=2]),
ot ot ot
where,
OXp(w)  OXp(u) duy
3t - 8Uj 3t
j=1 8Uj

Here the Einstein sum convention holds.

Remark 2.1. The role of the variable u concerns the idea of establishing a relation between
t, X1, X9 and X3. The dimension of M may vary with the problem in question.

2.1 Obtaining the Klein-Gordon equation

Of particular interest is the case in which
u= (t,ﬂjl,ﬂjg,ﬂjg) = (t,X) S R4,

where x = (x1, 72, 23) € R3.
In such a case we could have, point-wise,

r(x,t) = (ct, X1(t,x), Xo(t,x), X3(t,%)),
and
M ={r(x,t) : (x,t) € Q2 x[0,T]},

for an appropriate Q C R3.
Also, denoting dx = dxidxsdrs, the mass differential would be given by

(r) |R(r)|?
dm = sV dx = g

the semi-classical kinetics energy differential would be expressed by

Or(t,x) Or(t,x)

e = =% o I
di\?
- (%) «
() =
= —(c2 —v?) dm, (10)
so that
dE. = —c*(y/1 —v2/c2)|R(r)|*/—g dx,
where

df* = dt? — dX1(t,x)? — dXa(t,x)? — dX3(t,x)?,
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and

T T
Ji(r,R,n) = —/ /dEC dt+;/ /}A%\/_—g dx dt
0 Q 0 Q

T
= 62/ /|R(r)|2\/1—02/02 V—g dx dt
0 Q

T
+1/ /fm’\/—g dx dt, (11)
2Jo Ja

subject to

and

R(r(x,t)) =0, on 9Q x [0,T7,
/Q [R(r)2 /=g dx = m, on [0,T],

n(r)-— =0, in Qx[0,7],

where

o _ ocon
ot ot Ot
ar
_ ot
ot
ot
or 1

- - 12
N (12)
and
n(r) -n(r) =1, in Q x [0,7].
Also, we have denoted

Ty = ct,

(:EO?X) = ($07$17$27$3)7

Or(t,x)
g =—F_"
aflik
g = det{gi; },
Jij = 8i " 85>

where here again, such a product is given by

3
Y-zZ= —Yopc0 + Zyizh \V/y - (y07y17y27y3)7 z = (20721722723) S R47
i=1
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R = g" Ryj,
5 pi
Rjk = Rjik7
Pt 1l px
R = b by,

, __ L 9(Rrn()
LV \/m 8$j i,
b; = gilblja

and, -
{97} = {9},
Vi, j,k,1 € {0,1,2,3}.
Finally, we would also have

0X1\? [0X2\? [0X3\°
v=||— ) +(=2) +(=2).
ot ot ot

In particular for the special case in which

r(x,t) ~ (ct,x),

so that

and

where we have set
n==c= (0,01,02, Cg).

Here ¢ € R* is a constant such that
c-c=1,

and thus we would obtain

go ~ (110701 O)a g1~ (07 1a070)7 g2~ (0701 170) and g3~ (070107 1) € R4'

Therefore, defining ¢ € W12(Q x [0,T];C) as

R(ct,x)
\/ﬁ Y

L[ [~ 3 [ (- 00 b

+Z<9¢x t) 8(1)* X, t)) dxdt.

al'k Tl

¢(X7 t) =

we have

(13)
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and
T T
02/ / |R(r)*\/1—02/c2 \/—g dx dt ~ mcz/ / |p(x,1)|? dxdt.
0 Q 0 Q

Hence, we would also obtain

1 0¢(x,t) o™ (x,t
J(I‘,l’l,¢,E,)\1,)\2) ~ %(/ / 02 sta); ¢8(j: )dth

S [ )
+mc? /0 /Q |p(x,1)|* dxdt
—m/OTE(t) </Q\¢(x,t)|2dx—1> dt. (14)

The Euler Lagrange equations for such an energy are given by

1 9%¢(x,1) (x, 1)
2 <02 ot? kz:l O3 )
+mct(x,t) — By (t)o(x,t) =0, in Q, (15)

where,

and Fy(t) = mE(t).
Equation (15) is the relativistic Klein-Gordon one.
For Ey(t) = E7 € R (not time dependent) at thls point we suggest a solution (and implicitly

related time boundary conditions) ¢(x,t) = = ¢2( ), where
¢2(x) =0, on 0.

Therefore, replacing this solution into equation (15), we would obtain

0 X iBt
<; < C2h2¢ 2(x) — Z g;é )> + mc o (x) —E1¢2(x)> e” R =0,

k=1
in Q.
Denoting
E2

EQZ ;2h2+mc —El,
the final eigenvalue problem would stand for

3

82
I3 N | B =0, in 0
2 P Oy
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where F; is such that

[ o2t ax = 1.
Q

iE
Moreover, from (15), such a solution ¢(x,t) = e_Tltda(x) is also such that

v [(18%6(x,1) = B2(x,t)

2(02 ot -2 0} )
k=1

d(x, t)

ot

+mctp(x,t) = ih n €. (16

At this point, we recall that in quantum mechanics,
v = % /m.

Finally, we remark this last equation (16) is a kind of relativistic Schrodinger-Klein-Gordo:
equation.
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