CIENNCIANATURA

A Variational Formulation for the Relativistic Klein-Gordon Equation

Fabio Silva Botelho
Departamento de Matemática, Universidade Federal de Santa Catarina,Florianópolis, SC - Brazil

Abstract

This article develops a variational formulation for the relativistic Klein-Gordon equation. The main results are obtained through a connection between classical and quantum mechanics. Such a connection is established through the definition of normal field and its relation with the wave function concept.

Keywords: Quantum mechanics; Wave function; Normal field

1 The Newtonian approach

About the references, this work is based on the book "A Classical Description of Variational Quantum Mechanics and Related Models" [5], published by Nova Science Publishers. Details on the Sobolev Spaces involved may be found in [1, 4]. For standard references in quantum mechanics, we refer to [3, 6, 7] and the non-standard [2].

Finally, we emphasize this article is not about Bohmian mechanics, even though the David Bohm work has been always inspiring.

In this section, specifically for a free particle context, we shall obtain a close relationship between classical and quantum mechanics.

Let $\Omega \subset \mathbb{R}^{3}$ be an open, bounded and connected set set with a regular (Lipschitzian) boundary denoted by $\partial \Omega$, on which we define a position field, in a free volume context, denoted by $\mathbf{r}: \Omega \times[0, T] \rightarrow \mathbb{R}^{3}$, where $[0, T]$ is a time interval.

Suppose also an associated density distribution scalar field is given by $(\rho \circ \mathbf{r}): \Omega \times[0, T] \rightarrow$ $[0,+\infty)$, so that the kinetics energy for such a system, denoted by $J: U \times V \rightarrow \mathbb{R}$, is defined as

$$
J(\mathbf{r}, \rho)=\frac{1}{2} \int_{0}^{T} \int_{\Omega} \rho(\mathbf{r}(\mathbf{x}, t)) \frac{\partial \mathbf{r}(\mathbf{x}, t)}{\partial t} \cdot \frac{\partial \mathbf{r}(\mathbf{x}, t)}{\partial t} \sqrt{g} d \mathbf{x} d t
$$

subject to

$$
\int_{\Omega} \rho(\mathbf{r}(\mathbf{x}, t)) \sqrt{g} d \mathbf{x}=m, \text { on }[0, T],
$$

where m is the total system mass, t denotes time and $d \mathbf{x}=d x_{1} d x_{2} d x_{3}$.
Here,

$$
\begin{align*}
U= & \left\{\mathbf{r} \in W^{1,2}(\Omega \times[0, T]): \mathbf{r}(\mathbf{x}, 0)=\mathbf{r}_{0}(\mathbf{x})\right. \\
& \text { and } \left.\mathbf{r}(\mathbf{x}, T)=\mathbf{r}_{1}(\mathbf{x}), \text { in } \Omega\right\}, \tag{1}
\end{align*}
$$

and

$$
V=\left\{\rho(\mathbf{r}) \in L^{2}\left([0, T] ; W^{1,2}(\Omega)\right): \mathbf{r} \in U\right\} .
$$

Also

$$
\begin{gathered}
\mathbf{g}_{k}=\frac{\partial \mathbf{r}(\mathbf{x}, t)}{\partial x_{k}}, \\
g_{j k}=\mathbf{g}_{j} \cdot \mathbf{g}_{k},
\end{gathered}
$$

and

$$
g=\operatorname{det}\left\{g_{j k}\right\} .
$$

For such a standard Newtonian formulation, the kinetics energy takes into account just the tangential field given by the time derivative

$$
\frac{\partial \mathbf{r}(\mathbf{x}, t)}{\partial t}
$$

At this point, the idea is to complement such an energy with a new term which would consider also the variation of a normal field \mathbf{n} and concerning distribution of curvature, such that

$$
\mathbf{n} \cdot \frac{\partial \mathbf{r}(\mathbf{x}, t)}{\partial t}=0, \text { in } \Omega \times[0, T] .
$$

So, with such statements in mind, we redefine the concerning energy, denoting it again by $J: U \times V \times V_{1} \rightarrow \mathbb{R}$, as

$$
\begin{align*}
J(\mathbf{r}, \mathbf{n}, \rho)= & -\frac{1}{2} \int_{0}^{T} \int_{\Omega} \rho(\mathbf{r}(\mathbf{x}, t)) \frac{\partial \mathbf{r}(\mathbf{x}, t)}{\partial t} \cdot \frac{\partial \mathbf{r}(\mathbf{x}, t)}{\partial t} \sqrt{g} d \mathbf{x} d t \\
& +\frac{\gamma}{2} \int_{0}^{T} \int_{\Omega} \hat{R} \sqrt{g} d \mathbf{x} d t \tag{2}
\end{align*}
$$

where $\gamma>0$ is an appropriate constant,

$$
\begin{gathered}
\mathbf{g}_{k}=\frac{\partial \mathbf{r}(\mathbf{x}, t)}{\partial x_{k}}, \\
g=\operatorname{det}\left\{g_{i j}\right\}, \\
g_{i j}=\mathbf{g}_{i} \cdot \mathbf{g}_{j}, \\
\hat{R}=g^{i j} \hat{R}_{i j}, \\
\hat{R}_{j k}=\hat{R}_{j i k}^{i}, \\
\hat{R}_{j k l}^{i}=b_{i}^{l} b_{j k}, \\
b_{i j}=-\frac{1}{\sqrt{m}} \frac{\partial(\sqrt{\rho(\mathbf{r})} \mathbf{n}(\mathbf{r}))}{\partial x_{j}} \cdot \mathbf{g}_{i}, \\
b_{j}^{i}=g^{i l} b_{l j},
\end{gathered}
$$

and,

$$
\left\{g^{i j}\right\}=\left\{g_{i j}\right\}^{-1}
$$

$\forall i, j, k, l \in\{1,2,3\}$.
subject to

$$
\begin{gathered}
\mathbf{n}(\mathbf{r}) \cdot \mathbf{n}(\mathbf{r})=1, \text { in } \Omega \times[0, T], \\
\mathbf{n}(\mathbf{r}) \cdot \frac{\partial \mathbf{r}}{\partial t}=0, \text { in } \Omega \times[0, T],
\end{gathered}
$$

and

$$
\int_{\Omega} \rho(\mathbf{r}(\mathbf{x}, t)) \sqrt{g} d \mathbf{x}=m, \text { on }[0, T] \text {. }
$$

Here

$$
V_{1}=\left\{\mathbf{n}(\mathbf{r}) \in L^{2}(\Omega \times[0, T]): \mathbf{r} \in U\right\} .
$$

Thus, defining ϕ such that

$$
|\phi|=\sqrt{\frac{\rho}{m}}
$$

and already including the Lagrange multipliers concerning the restrictions, the final expression for the energy, denoted by $J: U \times V \times V_{1} \times V_{2} \times\left[V_{3}\right]^{2} \rightarrow \mathbb{R}$, would be given by

$$
\begin{align*}
J\left(\mathbf{r}, \mathbf{n}, \phi, E, \lambda_{1}, \lambda_{2}\right)= & -\frac{1}{2} \int_{0}^{T} \int_{\Omega} m|\phi(\mathbf{r}(\mathbf{x}, t))|^{2} \frac{\partial \mathbf{r}(\mathbf{x}, t)}{\partial t} \cdot \frac{\partial \mathbf{r}(\mathbf{x}, t)}{\partial t} \sqrt{g} d \mathbf{x} d t \\
& +\frac{\gamma}{2} \int_{0}^{T} \int_{\Omega} \hat{R} \sqrt{g} d \mathbf{x} d t \\
& -m \int_{0}^{T} E(t)\left(\int_{\Omega}|\phi(\mathbf{r})|^{2} \sqrt{g} d \mathbf{x}-1\right) d t \\
& +\left\langle\lambda_{1}, \mathbf{n} \cdot \mathbf{n}-1\right\rangle_{L^{2}} \\
& +\left\langle\lambda_{2}, \mathbf{n} \cdot \frac{\partial \mathbf{r}}{\partial t}\right\rangle_{L^{2}}, \tag{3}
\end{align*}
$$

where,

$$
\begin{align*}
U= & \left\{\mathbf{r} \in W^{1,2}(\Omega \times[0, T]): \mathbf{r}(\mathbf{x}, 0)=\mathbf{r}_{0}(\mathbf{x})\right. \\
& \text { and } \left.\mathbf{r}(\mathbf{x}, T)=\mathbf{r}_{1}(\mathbf{x}), \text { in } \Omega\right\} \tag{4}
\end{align*}
$$

$$
\begin{gathered}
V=\left\{\phi(\mathbf{r}) \in L^{2}\left([0, T] ; W^{1,2}(\Omega ; \mathbb{C})\right): \mathbf{r} \in U\right\} \\
V_{1}=\left\{\mathbf{n}(\mathbf{r}) \in L^{2}(\Omega \times[0, T]): \mathbf{r} \in U\right\} \\
V_{2}=L^{2}([0, T]) \\
V_{3}=L^{2}(\Omega \times[0, T])
\end{gathered}
$$

and generically

$$
\langle f, h\rangle_{L^{2}}=\int_{0}^{T} \int_{\Omega} f h \sqrt{g} d \mathbf{x} d t, \forall f, h \in L^{2}(\Omega \times[0, T])
$$

Moreover,

$$
\begin{gathered}
\mathbf{g}_{k}=\frac{\partial \mathbf{r}(\mathbf{x}, t)}{\partial x_{k}}, \\
g=\operatorname{det}\left\{g_{i j}\right\}, \\
g_{i j}=\mathbf{g}_{i} \cdot \mathbf{g}_{j}, \\
\hat{R}=g^{i j} \hat{R}_{i j}, \\
\hat{R}_{j k}=\hat{R}_{j i k}^{i}, \\
\hat{R}_{j k l}^{i}=b_{i}^{l} b_{j k}^{*}, \\
b_{i j}=-\frac{\partial(\phi(\mathbf{r}) \mathbf{n}(\mathbf{r}))}{\partial x_{j}} \cdot \mathbf{g}_{i}, \\
b_{j}^{i}=g^{i l} b_{l j},
\end{gathered}
$$

and,

$$
\left\{g^{i j}\right\}=\left\{g_{i j}\right\}^{-1}
$$

$\forall i, j, k, l \in\{1,2,3\}$.
Finally, in particular for the special case in which

$$
\mathbf{r}(\mathbf{x}, t) \approx \mathbf{x}
$$

so that

$$
\frac{\partial \mathbf{r}(\mathbf{x}, t)}{\partial t} \approx 0
$$

and

$$
\mathbf{n} \cdot \frac{\partial \mathbf{r}}{\partial t} \approx 0
$$

we may set

$$
\mathbf{n}=\mathbf{c}
$$

where $\mathbf{c} \in \mathbb{R}^{3}$ is a constant such that

$$
\mathbf{c} \cdot \mathbf{c}=1
$$

and obtain

$$
\mathbf{g}_{k} \approx \mathbf{e}_{k}
$$

where

$$
\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}
$$

is the canonical basis of \mathbb{R}^{3}.
Therefore, in such a case,

$$
\frac{\gamma}{2} \int_{0}^{T} \int_{\Omega} \hat{R} \sqrt{g} d \mathbf{x} d t \approx \frac{\gamma T}{2} \sum_{k=1}^{3} \int_{\Omega} \frac{\partial \phi}{\partial x_{k}} \frac{\partial \phi^{*}}{\partial x_{k}} d \mathbf{x}
$$

Hence, we would also obtain

$$
\begin{align*}
J\left(\mathbf{r}, \mathbf{n}, \phi, E, \lambda_{1}, \lambda_{2}\right) / T \approx & \tilde{J}(\phi, E) \\
= & \frac{\gamma}{2} \sum_{k=1}^{3} \int_{\Omega} \frac{\partial \phi}{\partial x_{k}} \frac{\partial \phi^{*}}{\partial x_{k}} d \mathbf{x} \\
& -E\left(\int_{\Omega}|\phi|^{2} d \mathbf{x}-1\right) . \tag{5}
\end{align*}
$$

This last energy is just the standard Schrödinger one in a free particle context.

2 A brief note on the realistic context, the Klein-Gordon equation

Denoting by c the speed of light and

$$
d \bar{t}^{2}=c^{2} d t^{2}-d X_{1}^{2}-d X_{2}^{2}-d X_{3}^{2}
$$

in a relativistic free particle context, the Hilbert variational formulation could be extended, for a motion in a pseudo Riemannian relativistic C^{1} class manifold M, where locally

$$
\begin{gathered}
M=\{\mathbf{r}(\mathbf{u}): \mathbf{u} \in \Omega\} \\
\mathbf{u}=\left(u_{1}, u_{2}, u_{3}, u_{4}\right) \in \mathbb{R}^{4}
\end{gathered}
$$

and

$$
\mathbf{r}: \Omega \subset \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}
$$

point-wise stands for,

$$
\mathbf{r}(\mathbf{u})=\left(c t(\mathbf{u}), X_{1}(\mathbf{u}), X_{2}(\mathbf{u}), X_{3}(\mathbf{u})\right),
$$

to a functional J_{1} where denoting $\rho(\mathbf{r})=|R(\mathbf{r})|^{2}$, the mass differential is given by

$$
d m=\frac{\rho(\mathbf{r})}{\sqrt{1-v^{2} / c^{2}}} \sqrt{|g|} d \mathbf{u}=\frac{|R(\mathbf{r})|^{2}}{\sqrt{1-v^{2} / c^{2}}} \sqrt{|g|} d \mathbf{u}
$$

the semi-classical kinetics energy differential is given by

$$
\begin{align*}
d E_{c} & =\frac{\partial \mathbf{r}(\mathbf{u})}{\partial t} \cdot \frac{\partial \mathbf{r}(\mathbf{u})}{\partial t} d m \\
& =-\left(\frac{d \bar{t}}{d t}\right)^{2} d m \\
& =-\left(c^{2}-v^{2}\right) d m \tag{6}
\end{align*}
$$

so that

$$
d E_{c}=-c^{2}\left(\sqrt{1-v^{2} / c^{2}}\right)|R(\mathbf{r})|^{2} \sqrt{|g|} d \mathbf{u}
$$

and

$$
\begin{align*}
J_{1}(\mathbf{r}, R, \mathbf{n})= & -\int_{\Omega} d E_{c}+\frac{\gamma}{2} \int_{\Omega} \hat{R} \sqrt{|g|} d \mathbf{u} \\
= & c^{2} \int_{\Omega}|R(\mathbf{r})|^{2} \sqrt{1-v^{2} / c^{2}} \sqrt{|g|} d \mathbf{u} \\
& +\frac{\gamma}{2} \int_{\Omega} \hat{R} \sqrt{|g|} d \mathbf{u} \tag{7}
\end{align*}
$$

subject to

$$
\int_{\Omega}|R(\mathbf{r})|^{2} \sqrt{|g|} d \mathbf{u}=m
$$

where m is the particle mass at rest.
Moreover,

$$
\mathbf{n}(\mathbf{r}) \cdot \frac{\partial \mathbf{r}}{\partial \bar{t}}=0, \quad \text { in } \Omega
$$

where

$$
\begin{align*}
\frac{\partial \mathbf{r}}{\partial \bar{t}} & =\frac{\partial \mathbf{r}}{\partial t} \frac{\partial t}{\partial \bar{t}} \\
& =\frac{\frac{\partial \mathbf{r}}{\partial t}}{\frac{\partial \bar{t}}{\partial t}} \\
& =\frac{\partial \mathbf{r}}{c \partial t} \frac{1}{\sqrt{1-v^{2} / c^{2}}} \tag{8}
\end{align*}
$$

and

$$
\mathbf{n}(\mathbf{r}) \cdot \mathbf{n}(\mathbf{r})=1, \text { in } \Omega
$$

Where γ is an appropriate positive constant to be specified.
Also,

$$
\begin{aligned}
& \mathbf{g}_{k}=\frac{\partial \mathbf{r}(\mathbf{u})}{\partial u_{k}} \\
& g=\operatorname{det}\left\{g_{i j}\right\} \\
& g_{i j}=\mathbf{g}_{i} \cdot \mathbf{g}_{j}
\end{aligned}
$$

where here, in this subsection, such a product is given by

$$
\begin{gathered}
\mathbf{y} \cdot \mathbf{z}=-y_{0} z_{0}+\sum_{i=1}^{3} y_{i} z_{i}, \forall \mathbf{y}=\left(y_{0}, y_{1}, y_{2}, y_{3}\right), \mathbf{z}=\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{4}, \\
\hat{R}=g^{i j} \hat{R}_{i j}, \\
\hat{R}_{j k}=\hat{R}_{j i k}^{i}, \\
\hat{R}_{j k l}^{i}=b_{i}^{l} b_{j k}^{*}, \\
b_{i j}=-\frac{1}{\sqrt{m}} \frac{\partial(R(\mathbf{r}) \mathbf{n}(\mathbf{r}))}{\partial u_{j}} \cdot \mathbf{g}_{i}, \\
b_{j}^{i}=g^{i l} b_{l j}
\end{gathered}
$$

and,

$$
\left\{g^{i j}\right\}=\left\{g_{i j}\right\}^{-1}
$$

$\forall i, j, k, l \in\{1,2,3,4\}$.
Finally,

$$
v=\sqrt{\left(\frac{\partial X_{1}}{\partial t}\right)^{2}+\left(\frac{\partial X_{2}}{\partial t}\right)^{2}+\left(\frac{\partial X_{3}}{\partial t}\right)^{2}}
$$

where,

$$
\begin{align*}
\frac{\partial X_{k}(\mathbf{u})}{\partial t} & =\frac{\partial X_{k}(\mathbf{u})}{\partial u_{j}} \frac{\partial u_{j}}{\partial t} \\
& =\sum_{j=1}^{4} \frac{\frac{\partial X_{k}(\mathbf{u})}{\partial u_{j}}}{\frac{\partial t(\mathbf{u})}{\partial u_{j}}}, \forall k \in\{1,2,3\} . \tag{9}
\end{align*}
$$

Here the Einstein sum convention holds.
Remark 2.1. The role of the variable \mathbf{u} concerns the idea of establishing a relation between t, X_{1}, X_{2} and X_{3}. The dimension of M may vary with the problem in question.

2.1 Obtaining the Klein-Gordon equation

Of particular interest is the case in which

$$
\mathbf{u}=\left(t, x_{1}, x_{2}, x_{3}\right)=(t, \mathbf{x}) \in \mathbb{R}^{4},
$$

where $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$.
In such a case we could have, point-wise,

$$
\mathbf{r}(\mathbf{x}, t)=\left(c t, X_{1}(t, \mathbf{x}), X_{2}(t, \mathbf{x}), X_{3}(t, \mathbf{x})\right)
$$

and

$$
M=\{\mathbf{r}(\mathbf{x}, t):(\mathbf{x}, t) \in \Omega \times[0, T]\}
$$

for an appropriate $\Omega \subset \mathbb{R}^{3}$.
Also, denoting $d \mathbf{x}=d x_{1} d x_{2} d x_{3}$, the mass differential would be given by

$$
d m=\frac{\rho(\mathbf{r})}{\sqrt{1-v^{2} / c^{2}}} \sqrt{-g} d \mathbf{x}=\frac{|R(\mathbf{r})|^{2}}{\sqrt{1-v^{2} / c^{2}}} \sqrt{-g} d \mathbf{x}
$$

the semi-classical kinetics energy differential would be expressed by

$$
\begin{align*}
d E_{c} & =\frac{\partial \mathbf{r}(t, \mathbf{x})}{\partial t} \cdot \frac{\partial \mathbf{r}(t, \mathbf{x})}{\partial t} d m \\
& =-\left(\frac{d \bar{t}}{d t}\right)^{2} d m \\
& =-\left(c^{2}-v^{2}\right) d m, \tag{10}
\end{align*}
$$

so that

$$
d E_{c}=-c^{2}\left(\sqrt{1-v^{2} / c^{2}}\right)|R(\mathbf{r})|^{2} \sqrt{-g} d \mathbf{x},
$$

where

$$
d \bar{t}^{2}=c^{2} d t^{2}-d X_{1}(t, \mathbf{x})^{2}-d X_{2}(t, \mathbf{x})^{2}-d X_{3}(t, \mathbf{x})^{2},
$$

and

$$
\begin{align*}
J_{1}(\mathbf{r}, R, \mathbf{n})= & -\int_{0}^{T} \int_{\Omega} d E_{c} d t+\frac{\gamma}{2} \int_{0}^{T} \int_{\Omega} \hat{R} \sqrt{-g} d \mathbf{x} d t \\
= & c^{2} \int_{0}^{T} \int_{\Omega}|R(\mathbf{r})|^{2} \sqrt{1-v^{2} / c^{2}} \sqrt{-g} d \mathbf{x} d t \\
& +\frac{\gamma}{2} \int_{0}^{T} \int_{\Omega} \hat{R} \sqrt{-g} d \mathbf{x} d t \tag{11}
\end{align*}
$$

subject to

$$
\begin{aligned}
& R(\mathbf{r}(\mathbf{x}, 0))=R_{0}(\mathbf{x}) \\
& R(\mathbf{r}(\mathbf{x}, T))=R_{1}(\mathbf{x})
\end{aligned}
$$

and

$$
\begin{gathered}
R(\mathbf{r}(\mathbf{x}, t))=0, \text { on } \partial \Omega \times[0, T] \\
\int_{\Omega}|R(\mathbf{r})|^{2} \sqrt{-g} d \mathbf{x}=m, \text { on }[0, T], \\
\mathbf{n}(\mathbf{r}) \cdot \frac{\partial \mathbf{r}}{\partial \bar{t}}=0, \quad \text { in } \Omega \times[0, T]
\end{gathered}
$$

where

$$
\begin{align*}
\frac{\partial \mathbf{r}}{\partial \bar{t}} & =\frac{\partial \mathbf{r}}{\partial t} \frac{\partial t}{\partial \bar{t}} \\
& =\frac{\frac{\partial \mathbf{r}}{\partial t}}{\frac{\partial \bar{t}}{\partial t}} \\
& =\frac{\partial \mathbf{r}}{c \partial t} \frac{1}{\sqrt{1-v^{2} / c^{2}}} \tag{12}
\end{align*}
$$

and

$$
\mathbf{n}(\mathbf{r}) \cdot \mathbf{n}(\mathbf{r})=1, \text { in } \Omega \times[0, T]
$$

Also, we have denoted

$$
\begin{gathered}
x_{0}=c t \\
\left(x_{0}, \mathbf{x}\right)=\left(x_{0}, x_{1}, x_{2}, x_{3}\right) \\
\mathbf{g}_{k}=\frac{\partial \mathbf{r}(t, \mathbf{x})}{\partial x_{k}}, \\
g=\operatorname{det}\left\{g_{i j}\right\} \\
g_{i j}=\mathbf{g}_{i} \cdot \mathbf{g}_{j}
\end{gathered}
$$

where here again, such a product is given by

$$
\mathbf{y} \cdot \mathbf{z}=-y_{0} z_{0}+\sum_{i=1}^{3} y_{i} z_{i}, \forall \mathbf{y}=\left(y_{0}, y_{1}, y_{2}, y_{3}\right), \mathbf{z}=\left(z_{0}, z_{1}, z_{2}, z_{3}\right) \in \mathbb{R}^{4}
$$

$$
\begin{gathered}
\hat{R}=g^{i j} \hat{R}_{i j}, \\
\hat{R}_{j k}=\hat{R}_{j i k}^{i}, \\
\hat{R}_{j k l}^{i}=b_{i}^{l} b_{j k}^{*}, \\
b_{i j}=-\frac{1}{\sqrt{m}} \frac{\partial(R(\mathbf{r}) \mathbf{n}(\mathbf{r}))}{\partial x_{j}} \cdot \mathbf{g}_{i}, \\
b_{j}^{i}=g^{i l} b_{l j},
\end{gathered}
$$

and,

$$
\left\{g^{i j}\right\}=\left\{g_{i j}\right\}^{-1}
$$

$\forall i, j, k, l \in\{0,1,2,3\}$.
Finally, we would also have

$$
v=\sqrt{\left(\frac{\partial X_{1}}{\partial t}\right)^{2}+\left(\frac{\partial X_{2}}{\partial t}\right)^{2}+\left(\frac{\partial X_{3}}{\partial t}\right)^{2}} .
$$

In particular for the special case in which

$$
\mathbf{r}(\mathbf{x}, t) \approx(c t, \mathbf{x})
$$

so that

$$
\frac{\partial \mathbf{r}(\mathbf{x}, t)}{\partial t} \approx(c, 0,0,0)
$$

and

$$
\mathbf{n} \cdot \frac{\partial \mathbf{r}}{\partial t} \approx 0
$$

where we have set

$$
\mathbf{n}=\mathbf{c}=\left(0, c_{1}, c_{2}, c_{3}\right) .
$$

Here $\mathbf{c} \in \mathbb{R}^{4}$ is a constant such that

$$
\mathbf{c} \cdot \mathbf{c}=1,
$$

and thus we would obtain

$$
\mathbf{g}_{0} \approx(1,0,0,0), \mathbf{g}_{1} \approx(0,1,0,0), \mathbf{g}_{2} \approx(0,0,1,0) \text { and } \mathbf{g}_{3} \approx(0,0,0,1) \in \mathbb{R}^{4}
$$

Therefore, defining $\phi \in W^{1,2}(\Omega \times[0, T] ; \mathbb{C})$ as

$$
\phi(\mathbf{x}, t)=\frac{R(c t, \mathbf{x})}{\sqrt{m}}
$$

we have

$$
\begin{align*}
\frac{\gamma}{2} \int_{0}^{T} \int_{\Omega} \hat{R} \sqrt{g} d \mathbf{x} d t \approx & \frac{\gamma}{2} \int_{0}^{T} \int_{\Omega}\left(-\frac{1}{c^{2}} \frac{\partial \phi(\mathbf{x}, t)}{\partial t} \frac{\partial \phi^{*}(\mathbf{x}, t)}{\partial t}\right. \\
& \left.+\sum_{k=1}^{3} \frac{\partial \phi(\mathbf{x}, t)}{\partial x_{k}} \frac{\partial \phi^{*}(\mathbf{x}, t)}{\partial x_{k}}\right) d \mathbf{x} d t \tag{11}
\end{align*}
$$

and

$$
c^{2} \int_{0}^{T} \int_{\Omega}|R(\mathbf{r})|^{2} \sqrt{1-v^{2} / c^{2}} \sqrt{-g} d \mathbf{x} d t \approx m c^{2} \int_{0}^{T} \int_{\Omega}|\phi(\mathbf{x}, t)|^{2} d \mathbf{x} d t
$$

Hence, we would also obtain

$$
\begin{align*}
J\left(\mathbf{r}, \mathbf{n}, \phi, E, \lambda_{1}, \lambda_{2}\right) \approx & \frac{\gamma}{2}\left(\int_{0}^{T} \int_{\Omega}-\frac{1}{c^{2}} \frac{\partial \phi(\mathbf{x}, t)}{\partial t} \frac{\partial \phi^{*}(\mathbf{x}, t)}{\partial t} d \mathbf{x} d t\right. \\
& \left.+\sum_{k=1}^{3} \int_{\Omega} \int_{0}^{T} \frac{\partial \phi(\mathbf{x}, t)}{\partial x_{k}} \frac{\partial \phi^{*}(\mathbf{x}, t)}{\partial x_{k}} d \mathbf{x} d t\right) \\
& +m c^{2} \int_{0}^{T} \int_{\Omega}|\phi(\mathbf{x}, t)|^{2} d \mathbf{x} d t \\
& -m \int_{0}^{T} E(t)\left(\int_{\Omega}|\phi(\mathbf{x}, t)|^{2} d \mathbf{x}-1\right) d t . \tag{14}
\end{align*}
$$

The Euler Lagrange equations for such an energy are given by

$$
\begin{align*}
& \frac{\gamma}{2}\left(\frac{1}{c^{2}} \frac{\partial^{2} \phi(\mathbf{x}, t)}{\partial t^{2}}-\sum_{k=1}^{3} \frac{\partial^{2} \phi(\mathbf{x}, t)}{\partial x_{k}^{2}}\right) \\
& +m c^{2} \phi(\mathbf{x}, t)-E_{1}(t) \phi(\mathbf{x}, t)=0, \text { in } \Omega \tag{15}
\end{align*}
$$

where,

$$
\begin{gathered}
\phi(\mathbf{x}, 0)=\phi_{0}(\mathbf{x}), \text { in } \Omega, \\
\phi(\mathbf{x}, T)=\phi_{1}(\mathbf{x}) \text { in } \Omega, \\
\phi(\mathbf{x}, t)=0, \text { on } \partial \Omega \times[0, T]
\end{gathered}
$$

and $E_{1}(t)=m E(t)$.
Equation (15) is the relativistic Klein-Gordon one.
For $E_{1}(t)=E_{1} \in \mathbb{R}$ (not time dependent), at this point we suggest a solution (and implicitly related time boundary conditions) $\phi(\mathbf{x}, t)=e^{-\frac{i E_{1} t}{\hbar}} \phi_{2}(\mathbf{x})$, where

$$
\phi_{2}(\mathbf{x})=0, \text { on } \partial \Omega .
$$

Therefore, replacing this solution into equation (15), we would obtain

$$
\left(\frac{\gamma}{2}\left(-\frac{E_{1}^{2}}{c^{2} \hbar^{2}} \phi_{2}(\mathbf{x})-\sum_{k=1}^{3} \frac{\partial^{2} \phi_{2}(\mathbf{x})}{\partial x_{k}^{2}}\right)+m c^{2} \phi_{2}(\mathbf{x})-E_{1} \phi_{2}(\mathbf{x})\right) e^{-\frac{i E_{1} t}{\hbar}}=0,
$$

in Ω.
Denoting

$$
E_{2}=-\frac{\gamma E_{1}^{2}}{2 c^{2} \hbar^{2}}+m c^{2}-E_{1}
$$

the final eigenvalue problem would stand for

$$
-\frac{\gamma}{2} \sum_{k=1}^{3} \frac{\partial^{2} \phi_{2}(\mathbf{x})}{\partial x_{k}^{2}}+E_{2} \phi_{2}(\mathbf{x})=0, \text { in } \Omega
$$

where E_{1} is such that

$$
\int_{\Omega}\left|\phi_{2}(\mathbf{x})\right|^{2} d \mathbf{x}=1
$$

Moreover, from (15), such a solution $\phi(\mathbf{x}, t)=e^{-\frac{i E_{1} t}{\hbar}} \phi_{2}(\mathbf{x})$ is also such that

$$
\begin{align*}
& \frac{\gamma}{2}\left(\frac{1}{c^{2}} \frac{\partial^{2} \phi(\mathbf{x}, t)}{\partial t^{2}}-\sum_{k=1}^{3} \frac{\partial^{2} \phi(\mathbf{x}, t)}{\partial x_{k}^{2}}\right) \\
& +m c^{2} \phi(\mathbf{x}, t)=i \hbar \frac{\partial \phi(\mathbf{x}, t)}{\partial t}, \text { in } \Omega
\end{align*}
$$

At this point, we recall that in quantum mechanics,

$$
\gamma=\hbar^{2} / m
$$

Finally, we remark this last equation (16) is a kind of relativistic Schrödinger-Klein-Gordos equation.

References

[1] R.A. Adams and J.F. Fournier, Sobolev Spaces, 2nd edn. (Elsevier, New York, 2003).
[2] D. Bohm, A Suggested Interpretation of the Quantum Theory in Terms of Hidden Variable I, Phys.Rev. 85, Iss. 2, (1952).
[3] D. Bohm Quantum Theory (Dover Publications INC., New York, 1989).
[4] F. Botelho, Functional Analysis and Applied Optimization in Banach Spaces, (Springe Switzerland, 2014).
[5] F. Botelho, A Classical Description of Variational Quantum Mechanics and Related Mode. Nova Science Publishers, New York, 2017.
[6] B. Hall, Quantum Theory for Mathematicians (Springer, New York 2013).
[7] L.D. Landau and E.M. Lifschits, Course of Theoretical Physics, Vol. 5- Statistical Physics part 1. (Butterworth-Heinemann, Elsevier, reprint 2008).

