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1 The Newtonian approach

A Variational Formulation for the Relativistic

Klein-Gordon Equation

July 9, 2018

Abstract

This article develops a variational formulation for the relativistic Klein-Gordon equation.
The main results are obtained through a connection between classical and quantum mechanics.
Such a connection is established through the definition of normal field and its relation with the
wave function concept.

1 The Newtonian approach

About the references, this work is based on the book ”A Classical Description of Variational
Quantum Mechanics and Related Models” [5], published by Nova Science Publishers. Details
on the Sobolev Spaces involved may be found in [1, 4]. For standard references in quantum
mechanics, we refer to [3, 6, 7] and the non-standard [2].

Finally, we emphasize this article is not about Bohmian mechanics, even though the David
Bohm work has been always inspiring.

In this section, specifically for a free particle context, we shall obtain a close relationship
between classical and quantum mechanics.

Let Ω ⊂ R
3 be an open, bounded and connected set set with a regular (Lipschitzian)

boundary denoted by ∂Ω, on which we define a position field, in a free volume context, denoted
by r : Ω× [0, T ] → R

3, where [0, T ] is a time interval.
Suppose also an associated density distribution scalar field is given by (ρ ◦ r) : Ω× [0, T ] →

[0,+∞), so that the kinetics energy for such a system, denoted by J : U × V → R, is defined as

J(r, ρ) =
1

2

∫ T

0

∫

Ω
ρ(r(x, t))

∂r(x, t)

∂t
· ∂r(x, t)

∂t

√
g dxdt,

subject to
∫

Ω
ρ(r(x, t))

√
g dx = m, on [0, T ],

where m is the total system mass, t denotes time and dx = dx1 dx2 dx3.
Here,

U = {r ∈ W 1,2(Ω× [0, T ]) : r(x, 0) = r0(x)

and r(x, T ) = r1(x), in Ω}, (1)

1and
V = {ρ(r) ∈ L2([0, T ];W 1,2(Ω)) : r ∈ U}.

Also

gk =
∂r(x, t)

∂xk
,

gjk = gj · gk,
and

g = det{gjk}.
For such a standard Newtonian formulation, the kinetics energy takes into account just the

tangential field given by the time derivative

∂r(x, t)

∂t
.

At this point, the idea is to complement such an energy with a new term which would
consider also the variation of a normal field n and concerning distribution of curvature, such
that

n · ∂r(x, t)
∂t

= 0, in Ω× [0, T ].

So, with such statements in mind, we redefine the concerning energy, denoting it again by
J : U × V × V1 → R, as

J(r,n, ρ) = −1

2

∫ T

0

∫

Ω
ρ(r(x, t))

∂r(x, t)

∂t
· ∂r(x, t)

∂t

√
g dxdt

+
γ

2

∫ T

0

∫

Ω
R̂
√
g dxdt, (2)

where γ > 0 is an appropriate constant,

gk =
∂r(x, t)

∂xk
,

g = det{gij},
gij = gi · gj ,
R̂ = gijR̂ij ,

R̂jk = R̂i
jik,

R̂i
jkl = bli bjk,

bij = − 1√
m

∂
(

√

ρ(r)n(r)
)

∂xj
· gi,

bij = gilblj ,

and,
{gij} = {gij}−1,

2
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and
V = {ρ(r) ∈ L2([0, T ];W 1,2(Ω)) : r ∈ U}.

Also

gk =
∂r(x, t)

∂xk
,

gjk = gj · gk,
and

g = det{gjk}.
For such a standard Newtonian formulation, the kinetics energy takes into account just the

tangential field given by the time derivative

∂r(x, t)

∂t
.

At this point, the idea is to complement such an energy with a new term which would
consider also the variation of a normal field n and concerning distribution of curvature, such
that

n · ∂r(x, t)
∂t

= 0, in Ω× [0, T ].

So, with such statements in mind, we redefine the concerning energy, denoting it again by
J : U × V × V1 → R, as

J(r,n, ρ) = −1

2

∫ T

0

∫

Ω
ρ(r(x, t))

∂r(x, t)

∂t
· ∂r(x, t)

∂t

√
g dxdt

+
γ

2

∫ T

0

∫

Ω
R̂
√
g dxdt, (2)

where γ > 0 is an appropriate constant,

gk =
∂r(x, t)

∂xk
,

g = det{gij},
gij = gi · gj ,
R̂ = gijR̂ij ,

R̂jk = R̂i
jik,

R̂i
jkl = bli bjk,

bij = − 1√
m

∂
(

√

ρ(r)n(r)
)

∂xj
· gi,

bij = gilblj ,

and,
{gij} = {gij}−1,

2∀i, j, k, l ∈ {1, 2, 3}.
subject to

n(r) · n(r) = 1, in Ω× [0, T ],

n(r) · ∂r
∂t

= 0, in Ω× [0, T ],

and
∫

Ω
ρ(r(x, t))

√
g dx = m, on [0, T ].

Here
V1 = {n(r) ∈ L2(Ω× [0, T ]) : r ∈ U}.

Thus, defining φ such that

|φ| =
√

ρ

m

and already including the Lagrange multipliers concerning the restrictions, the final expression
for the energy, denoted by J : U × V × V1 × V2 × [V3]

2 → R, would be given by

J(r,n, φ,E, λ1, λ2) = −1

2

∫ T

0

∫

Ω
m|φ(r(x, t))|2 ∂r(x, t)

∂t
· ∂r(x, t)

∂t

√
g dxdt

+
γ

2

∫ T

0

∫

Ω
R̂
√
g dxdt

−m

∫ T

0
E(t)

(
∫

Ω
|φ(r)|2 √

g dx− 1

)

dt

+〈λ1,n · n− 1〉L2

+

〈

λ2,n · ∂r
∂t

〉

L2

, (3)

where,

U = {r ∈ W 1,2(Ω× [0, T ]) : r(x, 0) = r0(x)

and r(x, T ) = r1(x), in Ω}, (4)

V = {φ(r) ∈ L2([0, T ];W 1,2(Ω;C)) : r ∈ U},
V1 = {n(r) ∈ L2(Ω× [0, T ]) : r ∈ U},

V2 = L2([0, T ]),

V3 = L2(Ω× [0, T ]),

and generically

〈f, h〉L2 =

∫ T

0

∫

Ω
fh

√
g dx dt,∀f, h ∈ L2(Ω × [0, T ]).

Moreover,

gk =
∂r(x, t)

∂xk
,

3
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g = det{gij},
gij = gi · gj ,
R̂ = gijR̂ij ,

R̂jk = R̂i
jik,

R̂i
jkl = bli b

∗

jk,

bij = −∂ (φ(r)n(r))

∂xj
· gi,

bij = gilblj ,

and,
{gij} = {gij}−1,

∀i, j, k, l ∈ {1, 2, 3}.
Finally, in particular for the special case in which

r(x, t) ≈ x,

so that
∂r(x, t)

∂t
≈ 0,

and

n · ∂r
∂t

≈ 0,

we may set
n = c,

where c ∈ R
3 is a constant such that

c · c = 1,

and obtain
gk ≈ ek,

where
{e1, e2, e3}

is the canonical basis of R3.
Therefore, in such a case,

γ

2

∫ T

0

∫

Ω
R̂

√
g dxdt ≈ γT

2

3
∑

k=1

∫

Ω

∂φ

∂xk

∂φ∗

∂xk
dx.

Hence, we would also obtain

J(r,n, φ,E, λ1 , λ2)/T ≈ J̃(φ,E)

=
γ

2

3
∑

k=1

∫

Ω

∂φ

∂xk

∂φ∗

∂xk
dx

−E

(
∫

Ω
|φ|2dx− 1

)

. (5)

This last energy is just the standard Schrödinger one in a free particle context.

4

∀i, j, k, l ∈ {1, 2, 3}.
subject to

n(r) · n(r) = 1, in Ω× [0, T ],

n(r) · ∂r
∂t

= 0, in Ω× [0, T ],

and
∫

Ω
ρ(r(x, t))

√
g dx = m, on [0, T ].

Here
V1 = {n(r) ∈ L2(Ω× [0, T ]) : r ∈ U}.

Thus, defining φ such that

|φ| =
√

ρ

m

and already including the Lagrange multipliers concerning the restrictions, the final expression
for the energy, denoted by J : U × V × V1 × V2 × [V3]

2 → R, would be given by

J(r,n, φ,E, λ1, λ2) = −1

2

∫ T

0

∫

Ω
m|φ(r(x, t))|2 ∂r(x, t)

∂t
· ∂r(x, t)

∂t

√
g dxdt

+
γ

2

∫ T

0

∫

Ω
R̂
√
g dxdt

−m

∫ T

0
E(t)

(
∫

Ω
|φ(r)|2 √

g dx− 1

)

dt

+〈λ1,n · n− 1〉L2

+

〈

λ2,n · ∂r
∂t

〉

L2

, (3)

where,

U = {r ∈ W 1,2(Ω× [0, T ]) : r(x, 0) = r0(x)

and r(x, T ) = r1(x), in Ω}, (4)

V = {φ(r) ∈ L2([0, T ];W 1,2(Ω;C)) : r ∈ U},
V1 = {n(r) ∈ L2(Ω× [0, T ]) : r ∈ U},

V2 = L2([0, T ]),

V3 = L2(Ω× [0, T ]),

and generically

〈f, h〉L2 =

∫ T

0

∫

Ω
fh

√
g dx dt,∀f, h ∈ L2(Ω × [0, T ]).

Moreover,

gk =
∂r(x, t)

∂xk
,

3
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2 A brief note on the relativistic context, the Klein-

Gordon equation

Denoting by c the speed of light and

dt
2
= c2dt2 − dX2

1 − dX2
2 − dX2

3 ,

in a relativistic free particle context, the Hilbert variational formulation could be extended, for
a motion in a pseudo Riemannian relativistic C1 class manifold M , where locally

M = {r(u) : u ∈ Ω},

u = (u1, u2, u3, u4) ∈ R
4,

and
r : Ω ⊂ R

4 → R
4

point-wise stands for,
r(u) = (ct(u),X1(u),X2(u),X3(u)),

to a functional J1 where denoting ρ(r) = |R(r)|2, the mass differential is given by

dm =
ρ(r)

√

1− v2/c2

√

|g| du =
|R(r)|2

√

1− v2/c2

√

|g| du,

the semi-classical kinetics energy differential is given by

dEc =
∂r(u)

∂t
· ∂r(u)

∂t
dm

= −
(

dt

dt

)2

dm

= −(c2 − v2) dm, (6)

so that
dEc = −c2(

√

1− v2/c2)|R(r)|2
√

|g| du,
and

J1(r, R,n) = −
∫

Ω
dEc +

γ

2

∫

Ω
R̂
√

|g| du

= c2
∫

Ω
|R(r)|2

√

1− v2/c2
√

|g| du

+
γ

2

∫

Ω
R̂
√

|g| du, (7)

subject to
∫

Ω
|R(r)|2

√

|g| du = m,

where m is the particle mass at rest.

5

g = det{gij},
gij = gi · gj ,
R̂ = gijR̂ij ,

R̂jk = R̂i
jik,

R̂i
jkl = bli b

∗

jk,

bij = −∂ (φ(r)n(r))

∂xj
· gi,

bij = gilblj ,

and,
{gij} = {gij}−1,

∀i, j, k, l ∈ {1, 2, 3}.
Finally, in particular for the special case in which

r(x, t) ≈ x,

so that
∂r(x, t)

∂t
≈ 0,

and

n · ∂r
∂t

≈ 0,

we may set
n = c,

where c ∈ R
3 is a constant such that

c · c = 1,

and obtain
gk ≈ ek,

where
{e1, e2, e3}

is the canonical basis of R3.
Therefore, in such a case,

γ

2

∫ T

0

∫

Ω
R̂

√
g dxdt ≈ γT

2

3
∑

k=1

∫

Ω

∂φ

∂xk

∂φ∗

∂xk
dx.

Hence, we would also obtain

J(r,n, φ,E, λ1 , λ2)/T ≈ J̃(φ,E)

=
γ

2

3
∑

k=1

∫

Ω

∂φ

∂xk

∂φ∗

∂xk
dx

−E

(
∫

Ω
|φ|2dx− 1

)

. (5)

This last energy is just the standard Schrödinger one in a free particle context.
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Moreover,

n(r) · ∂r
∂t

= 0, in Ω,

where

∂r

∂t
=

∂r

∂t

∂t

∂t

=
∂r
∂t

∂t
∂t

=
∂r

c∂t

1
√

1− v2/c2
, (8)

and
n(r) · n(r) = 1, in Ω.

Where γ is an appropriate positive constant to be specified.
Also,

gk =
∂r(u)

∂uk
,

g = det{gij},
gij = gi · gj ,

where here, in this subsection, such a product is given by

y · z = −y0z0 +

3
∑

i=1

yizi, ∀y = (y0, y1, y2, y3), z = (z0, z1, z2, z3) ∈ R
4,

R̂ = gijR̂ij ,

R̂jk = R̂i
jik,

R̂i
jkl = bli b

∗

jk,

bij = − 1√
m

∂ (R(r)n(r))

∂uj
· gi,

bij = gilblj ,

and,
{gij} = {gij}−1,

∀i, j, k, l ∈ {1, 2, 3, 4}.
Finally,

v =

√

(

∂X1

∂t

)2

+

(

∂X2

∂t

)2

+

(

∂X3

∂t

)2

,

6

2 A brief note on the relativistic context, the Klein-

Gordon equation

Denoting by c the speed of light and

dt
2
= c2dt2 − dX2

1 − dX2
2 − dX2

3 ,

in a relativistic free particle context, the Hilbert variational formulation could be extended, for
a motion in a pseudo Riemannian relativistic C1 class manifold M , where locally

M = {r(u) : u ∈ Ω},

u = (u1, u2, u3, u4) ∈ R
4,

and
r : Ω ⊂ R

4 → R
4

point-wise stands for,
r(u) = (ct(u),X1(u),X2(u),X3(u)),

to a functional J1 where denoting ρ(r) = |R(r)|2, the mass differential is given by

dm =
ρ(r)

√

1− v2/c2

√

|g| du =
|R(r)|2

√

1− v2/c2

√

|g| du,

the semi-classical kinetics energy differential is given by

dEc =
∂r(u)

∂t
· ∂r(u)

∂t
dm

= −
(

dt

dt

)2

dm

= −(c2 − v2) dm, (6)

so that
dEc = −c2(

√

1− v2/c2)|R(r)|2
√

|g| du,
and

J1(r, R,n) = −
∫

Ω
dEc +

γ

2

∫

Ω
R̂
√

|g| du

= c2
∫

Ω
|R(r)|2

√

1− v2/c2
√

|g| du

+
γ

2

∫

Ω
R̂
√

|g| du, (7)

subject to
∫

Ω
|R(r)|2

√

|g| du = m,

where m is the particle mass at rest.
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where,

∂Xk(u)

∂t
=

∂Xk(u)

∂uj

∂uj
∂t

=

4
∑

j=1

∂Xk(u)
∂uj

∂t(u)
∂uj

, ∀k ∈ {1, 2, 3}. (9)

Here the Einstein sum convention holds.

Remark 2.1. The role of the variable u concerns the idea of establishing a relation between
t,X1,X2 and X3. The dimension of M may vary with the problem in question.

2.1 Obtaining the Klein-Gordon equation

Of particular interest is the case in which

u = (t, x1, x2, x3) = (t,x) ∈ R
4,

where x = (x1, x2, x3) ∈ R
3.

In such a case we could have, point-wise,

r(x, t) = (ct,X1(t,x),X2(t,x),X3(t,x)),

and
M = {r(x, t) : (x, t) ∈ Ω× [0, T ]},

for an appropriate Ω ⊂ R
3.

Also, denoting dx = dx1dx2dx3, the mass differential would be given by

dm =
ρ(r)

√

1− v2/c2

√−g dx =
|R(r)|2

√

1− v2/c2

√−g dx,

the semi-classical kinetics energy differential would be expressed by

dEc =
∂r(t,x)

∂t
· ∂r(t,x)

∂t
dm

= −
(

dt

dt

)2

dm

= −(c2 − v2) dm, (10)

so that
dEc = −c2(

√

1− v2/c2)|R(r)|2√−g dx,

where
dt

2
= c2dt2 − dX1(t,x)

2 − dX2(t,x)
2 − dX3(t,x)

2,

and

7

Moreover,

n(r) · ∂r
∂t

= 0, in Ω,

where

∂r

∂t
=

∂r

∂t

∂t

∂t

=
∂r
∂t

∂t
∂t

=
∂r

c∂t

1
√

1− v2/c2
, (8)

and
n(r) · n(r) = 1, in Ω.

Where γ is an appropriate positive constant to be specified.
Also,

gk =
∂r(u)

∂uk
,

g = det{gij},
gij = gi · gj ,

where here, in this subsection, such a product is given by

y · z = −y0z0 +

3
∑

i=1

yizi, ∀y = (y0, y1, y2, y3), z = (z0, z1, z2, z3) ∈ R
4,

R̂ = gijR̂ij ,

R̂jk = R̂i
jik,

R̂i
jkl = bli b

∗

jk,

bij = − 1√
m

∂ (R(r)n(r))

∂uj
· gi,

bij = gilblj ,

and,
{gij} = {gij}−1,

∀i, j, k, l ∈ {1, 2, 3, 4}.
Finally,

v =

√

(

∂X1

∂t

)2

+

(

∂X2

∂t

)2

+

(

∂X3

∂t

)2

,

6
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J1(r, R,n) = −
∫ T

0

∫

Ω
dEc dt+

γ

2

∫ T

0

∫

Ω
R̂
√−g dx dt

= c2
∫ T

0

∫

Ω
|R(r)|2

√

1− v2/c2
√−g dx dt

+
γ

2

∫ T

0

∫

Ω
R̂
√−g dx dt, (11)

subject to
R(r(x, 0)) = R0(x)

R(r(x, T )) = R1(x)

and
R(r(x, t)) = 0, on ∂Ω× [0, T ],

∫

Ω
|R(r)|2 √−g dx = m, on [0, T ],

n(r) · ∂r
∂t

= 0, in Ω× [0, T ],

where

∂r

∂t
=

∂r

∂t

∂t

∂t

=
∂r
∂t

∂t
∂t

=
∂r

c∂t

1
√

1− v2/c2
, (12)

and
n(r) · n(r) = 1, in Ω× [0, T ].

Also, we have denoted
x0 = ct,

(x0,x) = (x0, x1, x2, x3),

gk =
∂r(t,x)

∂xk
,

g = det{gij},
gij = gi · gj ,

where here again, such a product is given by

y · z = −y0z0 +

3
∑

i=1

yizi, ∀y = (y0, y1, y2, y3), z = (z0, z1, z2, z3) ∈ R
4,

8

where,

∂Xk(u)

∂t
=

∂Xk(u)

∂uj

∂uj
∂t

=

4
∑

j=1

∂Xk(u)
∂uj

∂t(u)
∂uj

, ∀k ∈ {1, 2, 3}. (9)

Here the Einstein sum convention holds.

Remark 2.1. The role of the variable u concerns the idea of establishing a relation between
t,X1,X2 and X3. The dimension of M may vary with the problem in question.

2.1 Obtaining the Klein-Gordon equation

Of particular interest is the case in which

u = (t, x1, x2, x3) = (t,x) ∈ R
4,

where x = (x1, x2, x3) ∈ R
3.

In such a case we could have, point-wise,

r(x, t) = (ct,X1(t,x),X2(t,x),X3(t,x)),

and
M = {r(x, t) : (x, t) ∈ Ω× [0, T ]},

for an appropriate Ω ⊂ R
3.

Also, denoting dx = dx1dx2dx3, the mass differential would be given by

dm =
ρ(r)

√

1− v2/c2

√−g dx =
|R(r)|2

√

1− v2/c2

√−g dx,

the semi-classical kinetics energy differential would be expressed by

dEc =
∂r(t,x)

∂t
· ∂r(t,x)

∂t
dm

= −
(

dt

dt

)2

dm

= −(c2 − v2) dm, (10)

so that
dEc = −c2(

√

1− v2/c2)|R(r)|2√−g dx,

where
dt

2
= c2dt2 − dX1(t,x)

2 − dX2(t,x)
2 − dX3(t,x)

2,

and

7
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R̂ = gijR̂ij ,

R̂jk = R̂i
jik,

R̂i
jkl = bli b

∗

jk,

bij = − 1√
m

∂ (R(r)n(r))

∂xj
· gi,

bij = gilblj ,

and,
{gij} = {gij}−1,

∀i, j, k, l ∈ {0, 1, 2, 3}.
Finally, we would also have

v =

√

(

∂X1

∂t

)2

+

(

∂X2

∂t

)2

+

(

∂X3

∂t

)2

.

In particular for the special case in which

r(x, t) ≈ (ct,x),

so that
∂r(x, t)

∂t
≈ (c, 0, 0, 0),

and

n · ∂r
∂t

≈ 0,

where we have set
n = c = (0, c1, c2, c3).

Here c ∈ R
4 is a constant such that

c · c = 1,

and thus we would obtain

g0 ≈ (1, 0, 0, 0), g1 ≈ (0, 1, 0, 0), g2 ≈ (0, 0, 1, 0) and g3 ≈ (0, 0, 0, 1) ∈ R
4.

Therefore, defining φ ∈ W 1,2(Ω× [0, T ];C) as

φ(x, t) =
R(ct,x)√

m
,

we have

γ

2

∫ T

0

∫

Ω
R̂

√
g dxdt ≈ γ

2

∫ T

0

∫

Ω

(

− 1

c2
∂φ(x, t)

∂t

∂φ∗(x, t)

∂t

+
3

∑

k=1

∂φ(x, t)

∂xk

∂φ∗(x, t)

∂xk

)

dxdt, (13)

9
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and

c2
∫ T

0

∫

Ω
|R(r)|2

√

1− v2/c2
√
−g dx dt ≈ mc2

∫ T

0

∫

Ω
|φ(x, t)|2 dxdt.

Hence, we would also obtain

J(r,n, φ,E, λ1, λ2) ≈ γ

2

(
∫ T

0

∫

Ω
− 1

c2
∂φ(x, t)

∂t

∂φ∗(x, t)

∂t
dxdt

+

3
∑

k=1

∫

Ω

∫ T

0

∂φ(x, t)

∂xk

∂φ∗(x, t)

∂xk
dxdt

)

+mc2
∫ T

0

∫

Ω
|φ(x, t)|2 dxdt

−m

∫ T

0
E(t)

(
∫

Ω
|φ(x, t)|2dx− 1

)

dt. (14)

The Euler Lagrange equations for such an energy are given by

γ

2

(

1

c2
∂2φ(x, t)

∂t2
−

3
∑

k=1

∂2φ(x, t)

∂x2k

)

+mc2φ(x, t) − E1(t)φ(x, t) = 0, in Ω, (15)

where,
φ(x, 0) = φ0(x), in Ω,

φ(x, T ) = φ1(x), in Ω,

φ(x, t) = 0, on ∂Ω× [0, T ]

and E1(t) = mE(t).
Equation (15) is the relativistic Klein-Gordon one.
For E1(t) = E1 ∈ R (not time dependent), at this point we suggest a solution (and implicitly

related time boundary conditions) φ(x, t) = e−
iE1t

� φ2(x), where

φ2(x) = 0, on ∂Ω.

Therefore, replacing this solution into equation (15), we would obtain

(

γ

2

(

− E2
1

c2�2
φ2(x)−

3
∑

k=1

∂2φ2(x)

∂x2k

)

+mc2φ2(x)− E1φ2(x)

)

e−
iE1t

� = 0,

in Ω.
Denoting

E2 = − γE2
1

2c2�2
+mc2 − E1,

the final eigenvalue problem would stand for

−γ

2

3
∑

k=1

∂2φ2(x)

∂x2k
+ E2φ2(x) = 0, in Ω

10
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where E1 is such that
∫

Ω
|φ2(x)|2 dx = 1.

Moreover, from (15), such a solution φ(x, t) = e−
iE1t

� φ2(x) is also such that

γ

2

(

1

c2
∂2φ(x, t)

∂t2
−

3
∑

k=1

∂2φ(x, t)

∂x2k

)

+mc2φ(x, t) = i�
∂φ(x, t)

∂t
, in Ω. (16)

At this point, we recall that in quantum mechanics,

γ = �
2/m.

Finally, we remark this last equation (16) is a kind of relativistic Schrödinger-Klein-Gordon
equation.
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