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Abstract

Current analysis investigates genotype x environment interaction and stability performance of grain yield with nine 
maize genotypes in seven environments. ANOVA revealed highly significant (p-value<0.001) data for genotypes, 
environments and their interactions. Only PC1 (45.4%) and PC2 (35%) were significant (p ≤ 0.05). Genotype G7 had a 
specific adaptation to environment E7, whereas genotypes G2 and G3 were adapted to environment E1, and genotypes 
G8 and G9 to environment E5. Dataset was divided into group A, composed of E5 and E7, and group B composed 
of E1, E2, E3 and E6. Genotypes G1, G2, G3 and G6, belonging to group B, were the most productive. Further, 
no environment fell into the G4, G5, G7, G8 and G9 sectors, denoting these genotypes as the poorest ones across 
environments. GGE biplot indicated that genotype G4 was highly unstable, whereas G3 very stable. In addition, 
G2 was more desirable due to its small contribution to both G and GE. On the other hand, G4 and G9 were more 
undesirable due to large contribution to either G or GE. Finally, genotypes G2 and G9 were very different. Their 
dissimilarity may be due to difference in mean yield and/or in GEI.
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1 Introduction

Our food source heavily depends on cereals which 
have nourished humans since their domestication 
thousands of years ago. They continued to be the most 
important source of calories for most human beings 
(Daryanto et al., 2016). Several cereal crops are used 
for food. Wheat, rice and maize are important human 
food sources, accounting for 94% of all cereal con-
sumption (Ranum et al., 2014). The consumption of 
major cereal grains (i.e., wheat, rice and maize) varies 
widely by region: while wheat is the preferred cereal 
in Europe, rice is the major cereal in Asia and maize 
predominates in Africa and the Americas (Ranum et 
al., 2014).

Maize (Zea mays L.), also called Indian corn, is 
the third most important cereal crop in the world af-
ter wheat and rice (Choudhary & Kumar, 2013) since 
it represents 34% of total global cereal production 
(FAOSTAT, 2014). It originated in southern Mexico 
(Matsuoka et al., 2002) and spread across the Americas 
and subsequently to Europe, Africa and Asia (Rótolo et 
al., 2015). Maize belongs to the Poaceae family and is 
primarily a cross pollinated species, a feature that has 
contributed towards its broad morphological variabi-
lity and geographical adaptability (Ishaq et al., 2015).

Maize, a major crop grown for food, feed, and fuel 
(Sharma et al., 2012; Ranum et al., 2014; Wang et al., 
2016), is cultivated worldwide with large differences in 
yield (Ranum et al., 2014). Maize’s range of cultivation 
stretches between 50°N to 40°S, and at altitudes varying 
from sea level to 3300 meters above sea level (Ishaq et 
al., 2015). Environmental conditions strongly influence 
agricultural production and cause wide variations in 
crop yield (Akbarpour et al., 2014). Globally, climate 
variability accounts for roughly a third (~32-39%) of the 
observed yield variability for several cereals, including 
maize (Ray et al., 2015).

Besides environmental fluctuations, yield is highly 
influenced by many genetic factors (Akter et al., 2014). 
Maize exhibits extensive molecular and phenotypic 
variation (Tenaillon et al., 2001; Wright et al., 2005; 
Flint-Garcia et al., 2005). Morphologically maize exhi-
bits a greater diversity of phenotypes than perhaps 
any other grain crop (Wallace et al., 2014) due to its 
artificial selection by domestication (Wright et al., 
2005). Moreover, standing height of maize genotypes 
at flowering may range between 0.5 and 5 meters; they 
mature between 60 and 330 days after planting; produce 
between 1 and 4 ears per plant; between 10 and 1800 
kernels per ear and yield from 0.5 to 23.5 tons of grain 
per hectare (Ortiz et al., 2010).

As a cash crop and a model biological system, 
maize has a long history as a model for the study of 
genetics, evolution, and domestication (Wei et al., 
2007; Wallace et al., 2014). Its genetic diversity has 
been used to analyze the molecular basis of phenotypic 
variation and to improve agricultural efficiency and 

sustainability (McMullen et al., 2009). Thus, analysis 
of genotype interaction with environmental conditions 
would improve information on the adaptability and 
stability performance of genotypes which influence 
the selection and recommendation of cultivars (Bose 
et al., 2014; Hongyu et al., 2014).

Expansion of crops into varied agro-climatic con-
ditions leads to relatively different performances of 
the same cultivars when they are evaluated in different 
environments (Silveira et al., 2013). The yield trial is 
one of the most common experiments in agricultural 
research, typically testing a number of genotypes in 
several environments (Gauch, 2006). Under the same 
management conditions, variations in the yield per-
formance of cultivars are attributed to the effect of 
the genotype × environment (G×E) interaction (Din-
gkuhnet al., 2006).

The performance of a crop is the result of the culti-
var’s genotype (G), the environment in which it grows 
(E), and the interaction between G and E (GEI) (Akter 
et al., 2015). Interaction between these two explanatory 
variables gives an insight towards the identification of 
the genotype suitable for specific environments, which 
may constitute good opportunities (Bornhofen et al., 
2017). However, GEI impairs the selection of cultivars, 
because it changes the genotypic performance across 
environments (Mohamed, 2013) and minimizes the size 
of the association between phenotypic and genotypic 
rates (Alwala et al., 2010).

Several statistical methods are available to mini-
mize the effect of G × E interaction on the selection 
of cultivars and the prediction of the phenotypic res-
ponse to environmental changes (Silveira et al., 2013). 
Two frequently used statistical analyses have been the 
Additive Main Effects and Multiplicative Interaction 
(AMMI) model and the Genotype main effects and 
Genotype X Environment interaction effects (GGE) 
model (Gauch, 2006).

In recent years, the quantification of GEI and yield 
stability studies involving several cereal crops have 
been done (Benin et al., 2012; Forkman & Piepho, 2014; 
Pereira et al., 2014; Carvalho et al., 2016). Current assay 
evaluates the genotypic stability and adaptability of 
nine maize genotypes in seven environments using 
AMMI and GGE models.

2 Material and Methods

Data Collection

The yield maize was obtained from the Internatio-
nal Maize and Wheat Improvement Center (CIMMYT; 
http://data.cimmyt.org/dvn/dv/cimmytdatadvn). Assays 
with nine genotypes (coded G1 to G9) from Tropical 
Three Way Crosses White Late Normal and QPM 
Hybrid Trial (TTWCLWQN) were conducted in seven 
environments, in 2013 (Table 1).
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Data Analysis

Maize yield data for nine genotypes in seven envi-
ronments were subjected to Additive Main Effects and 
Multiplicative Interaction (AMMI) and Genotype main 
effects and Genotype-Environment interaction (GGE) 
models using R program (R Core Team, 2016). These 
models combined analysis of variance (AOV) and singu-
lar value decomposition (SVD), also known as principal 
components analysis (PCA). While AMMI model (called 
doubly-centered PCA) applies SVD to data minus the 
genotype and environment means, the GGE model (called 
environment-centered PCA) applies SVD to data minus 
the environment means (Gauch, 2006).

AOV and SVD were invented by Fisher (1918) and Pe-
arson (1901), respectively. However, Kempton (1984) was 
the first to publish an article on agriculture using AMMI 
and GGE, which triggered interest on the models (Gauch, 
2006). These models are often applied to yield-trial data 
which use any two-way data matrices originating from 
several types of experiments. Thus, the data structure is 
a two-way factorial design with a number of genotypes 
tested within several environments.

Initially, adaptability and phenotype stability analyses 
were performed by AMMI method described by Zobel et 
al. (1988), using the statistical model below:

where Yij is the mean response of genotype i in envi-
ronment j; μ is the overall mean; gi is the fixed effect of 

genotype i (i = 1, 2, ... g); ej is the random effect of envi-
ronment j (j = 1, 2, ... e); εij is the average experimental 
error; G × E interaction is represented by factors; εk is a 
unique value of the kth interaction principal component 
analysis (IPCA), (k = 1, 2, ... p, where p is the maximum 
number of estimable main components), εik is a singular 
rate for the ith genotype in the kth IPCA, εjk is a unique 
rate of the jth environment in the kth IPCA; rij is the error 
for G × E interaction or AMMI residue (noise present in 
the data); and k is the characteristic non-zero roots, k = 
[1, 2, ... min (G, E - 1)].

Subsequently, a study of adaptability and phenotype 
stability of the biplot graphic was designed by combining 
the orthogonal axes of IPCAs. The biplot term refers to 
a type of graphic that contains two categories of points, 
which specifically refers to genotypes and environments. 
The biplot graphic interpretation was based on the va-
riation caused by the main additional effects of genotype 
and environment, and the multiplication effect of G × 
E interaction. In the case of GE interaction, the biplot 
was interpreted by observing the magnitude and sign of 
the scores of genotypes and environments, for the axis 
(axes) of interaction.

The abscissa in AMMI1 biplot represents the main 
effects (overall average of the variables of the genotypes 
evaluated) and the ordinate is the first interaction axis 
(IPCA1). In this case, the lower the IPCA1 rate (absolute 
rates), the lower is its contribution to G × E interaction, 
and, therefore, a more stable genotype. The ideal ge-
notype is that with high productivity and IPCA1 rates 
close to zero. An undesirable genotype has low stability 
associated with low productivity. In AMMI2 biplot, the 

Code Site Latitude Longitude Altitude Planting Date Harvest Date

E1
Costa Rica:

Concepción de Pilas, 
Buenos Aires, Puntarenas

09°60’N 83°27’W 571 5/14/2013 9/17/2013

E2
Costa Rica:

El Parque, Los Chiles, 
Alajuela

10°57’N 84°40’W 77 7/2/2013 11/3/2013

E3

Costa Rica:
La Gloria, Concepción 
de Pilas, Buenos Aires, 

Puntarenas

09°50’N 83°27’W 430 5/14/2013 9/17/2013

E4
Costa Rica:

Veracruz, Pejibaye, Pérez 
Zeledón

09°60’N 83°32’W 535 5/15/2013 9/18/2013

E5
Mexico:

Villaflores, Chiapas
15°45’N 92°16’W 600 6/7/2013 12/26/2013

E6
Mexico:

Zacapalco, Tepalcingo, Mor.
18°37’N 98°59’W 1043 7/6/2013 11/28/2013

E7
Guatemala:

Cuyuta, Masagua
14°15’N 90°00’W 48 6/26/2013 10/18/2013

Table 1 – Geographic information, planting and harvesting dates for sites in which yield maize was evaluated in 2013.

(1)



Machado, N. G.; Lotufo-Neto, N.; Hongyu, K.

Ci. e Nat., Santa Maria, v. 41, e25, p. 1-09, 2019

04

points of stable genotypes and environments (with little 
contribution to the sum of squares of GE interaction 
(SSGxE)) lie near the origin.

Finally, GGE graph analysis was also performed to 
evaluate adaptability and phenotypic stability, described 
in Yan et al. (2000), using the statistical model below:

where Yij is the mean response of genotype i in en-
vironment j; μj is the mean for environment j; εk is the 
unique rate of the kth interaction principal component 
analysis (IPCA), (k = 1, 2, ... p, where p is the maximum 
number of estimable main components); εik is a sin-
gular rate for the ith genotype in the kth IPCA; εjk is a 
unique rate of the jth environment in the kth IPCA; rij is 
the error for G × E interaction or AMMI residue (noise 
present in the data); εij is average experimental error; 
G × E interaction is represented by the factors; k is the 
characteristic non-zero roots, k = [1, 2, ... min (G, E - 1)].

GGE biplots display both G and GE, which are the two 
sources of variation relevant to cultivar evaluation. They 
are constructed by plotting the primary effect scores of 
each genotype (x axis) and each site against their respective 
secondary effect scores (y axis) such that each genotype 
and each test site are represented by a “marker” (Yan et 
al., 2001). The commonly used GGE biplot is based on 
the Sites Regression (SREG) linear-bilinear (multiplica-
tive) model (Cornelius et al., 1996). GGE analysis may 
include two aspects: (i) mega-environment analysis and 
(ii) genotype evaluation (Yan & Kang, 2003).

In order to evaluate if a biplot model is adequate, Yan 
& Tinker (2006) proposed the “information relation (IR)” 
that displays patterns in a double entry table, where we 
can assume, for example, a table that contains genotypes 
and environments. The maximum number k=min(E, G-1) 
of PCs is required to represent this table. If there is any 
correlation between the environments, then the ratio 
of explained variance should be greater than 1/k for the 

first PCs, if there is no correlation between the environ-
ments, the ratio of the explained variance for each PC is 
exactly equal to 1/k be less than or equal to 1/k for other 
PCs (Yan & Tinker, 2006; Yan, 2011). The ratio of total 
variation explained by each PC multiplied by k is the 
way of calculating the IR for each PC. It is interpreted 
as follows: PC with IR < 1 has no pattern or information 
and a PC with IR ≥ 1 contains patterns of association 
between environments. If only the first two PCs have an 
IR ≥ 1, then the data patterns are adequately represented 
by a biplot with dimension 2 (Yan & Tinker, 2006).

3 Results and Discussion

AMMI Analysis and Biplots

Maize yield ranged between 3.2 and 12.05 t ha-1 for 
the different environments, and between 6.65 and 8.79 
t ha-1 for the different genotypes (Table 2). The overall 
average maize yield was 7.46 t ha- 1. Bergamaschi et al. 
(2006) obtained an average grain yield of approximately 
10 t ha-1 in irrigated maize plots, with a high level of 
management, in southern Brazil. However, the average 
grain yield was less than 6 t ha-1 in non-irrigated plots. 
Raw data of maize yield revealed that the most productive 
environment was E1 for all genotypes; the least being 
E7. In average, the most productive genotype was G2 
and the least productive was G9.

AMMI analysis of variance showed that the effects 
of sources of variation, genotype, environment, and GEI 
were significant for maize yield (Table 3). This analysis 
of variance also showed that 80.36% of total SS was 
attributable to environmental effects, namely, 6.12% to 
genotypic effects and 8.04% to GEI. As a rule, environment 
explains up to 80% of the variation in multi-environ-
ment trials, while genotype and GEI usually represent 
approximately 10 - 15% of each variation (Gauch & Zobel, 
1996). A large SS for environments indicates that the en-
vironments were distinct, with large differences among 

(2)

Genotype
Test Environments

Mean
E1 E2 E3 E4 E5 E6 E7

G1 13.60 8.02 8.56 6.96 7.72 10.09 3.49 8.35

G2 14.25 8.39 8.98 6.95 7.63 11.69 3.64 8.79

G3 12.33 8.05 8.98 5.68 6.98 10.80 3.04 7.98

G4 11.68 3.31 8.00 6.04 5.28 11.18 2.46 6.85

G5 11.70 7.16 7.38 5.38 5.67 8.82 3.33 7.06

G6 12.40 7.40 7.73 5.42 7.15 10.00 3.30 7.63

G7 10.29 5.72 6.49 6.42 7.40 9.26 3.37 6.99

G8 11.44 4.76 7.56 5.89 7.44 7.47 3.07 6.80

G9 10.78 4.35 7.57 4.98 8.17 7.60 3.12 6.65

Mean 12.05 6.35 7.92 5.97 7.05 9.66 3.20 7.46

Table 2 – Mean yield-trial data of maize (t ha−1) of nine genotypes (G1 to G9) tested at seven locations (E1 to E7) in 2013.
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environmental means which caused most variations in 
maize yield. In addition to environmental heterogeneity, 
significant differences between the genotypes are also 
indicated, since responses were not coincident in test 
environments. Genotypes were therefore characterized 
as environmentally-induced changes. With the method 
of Gollob (1968) it was verified that PC1 and PC2 were 
significant (p ≤ 0.05), which implies predictions of GEI by 
the first two PCs. Thus, it was possible to explain 80.4% 
of the interaction sum of squares, at 45.4% and 35% for 
PC1 and PC2, respectively. The coefficient of variation 
was 11.90%, indicating good experimental accuracy in 
the test set.

AMMI1 biplot shows E1 and E6 as the most productive 
environments, whilst E7 was the least productive (Figure 
1). In general, genotypes had similar maize yield, but the 
most and the least productive was G2 followed by G1, and 
G8 followed by G9, respectively. Maize yield of genotypes 
G1, G2, G3 and G6 were above average, while E1, E3 and 
E6 were above average among the environments.

In the AMMI2 biplot, genotypes G1, G5, G6 and G7 
were the most stable and contributed less to GEI, since 
they were positioned near the origin of the biplot (Figure 
2). The other genotypes were unstable and contributed 
more to GEI. In fact, they were farther off the origin. 
On the other hand, E3 and E4 respectively contribute 
less to GEI, or rather, it was not only stable but also the 
largest contributor to the genotypes’ phenotype stability. 
If genotypes and environments are positioned close to 
one other in the biplot, they are positive associations 
with specific adaptation enabling the establishment of 
agronomic zones with relative ease (Silveira et al., 2013). 
Genotype G7 had a specific adaptation to environment E7, 
whereas genotypes G2 and G3 were adapted to environ-
ment E1, and genotypes G8 and G9 to environment E5.

Source DF SS MS Explained 
(%)

Accumulated 
(%)

Environments 
(E)

6 1292.57 215.429*** - -

Genotypes 
(G)

8 98.42 12.302*** - -

G x E 48 129.40 2.696*** - -

PC1 13 58.76 4.52*** 45.4 45.4

PC2 11 45.30 4.12*** 35.0 80.4

PC3 9 12.19 1.35NS 9.4 89.8

PC4 7 6.827 0.97 NS 5.3 95.1

PC5 5 4.69 0.94 NS 3.6 98.7

PC6 3 1.64 0.55 NS 1.3 100.0

Mean (t ha-1) = 7.46

Coefficient of Variation (%) = 11.90

Table 3 – Analysis of variance for the AMMI model by fixed model of grain yield (t ha-1) for maize trial and decomposition of the sum 
of squares of genotype (G) and environment (E) interactions.

DF = Degree of Freedom; SS = Sum of Square; MS = Mean Square; *** significant at 0.1%; ** 
significant at 1%; * significant at 5%; NS = not significant (p-value > 0.05).

Figure 1 – AMMI1 biplot (main effect vs PC1) for maize 
productivity data (t ha-1) with nine genotypes (G) and seven 
environments (E).

Figure 2 – AMMI2 biplot (PC1 vs PC2) for maize productivity 
data (t ha-1) with nine genotypes (G) and seven environments 
(E).
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Mega-environment Analysis by GGE biplot

While GGE biplot of PC1 scores explained 62.4%, 
PC2 scores explained 20.72% of the total G+GE variation, 
totalizing 83.12% (Figure 3). One attractive feature of the 
GGE biplot is to graphically show the ‘which-won-where’ 
pattern of a genotype environment two-way data (Yan 
et al., 2000), revealing mega-environments. The latter 
are defined as a group of sub-regions that consistently 
share a single genotype or a group of similar genotypes 
specifically adapted and the best in performance (Gauch 
& Zobel, 1996; Yan & Rajcan, 2002).

Mega-environments on biplot consist of an irregular 
polygon and a set of straight lines that radiate from the 
biplot origin to intersect each of the polygon sides at 
right angles (Yan, 2011). Vertices are genotypes makers 
and they radiate lines that perpendicularly intersect a 
polygon side representing hypothetical environments. 
Thereby, the radiate lines divide the biplot into sectors. 
There is a vertex genotype for each sector, indicating a 
nominal winner for environments falling into that sector 
(Yan, 2011).

The vertex genotypes which formed the polygon were 
G1, G2, G4 and G9 (Figure 3). The nine environments 
were cut into two groups by the radiate lines: (i) group A 
composed of E5 and E7; (ii) group B composed of E1, E2, 
E3 and E6. G1 and G2 are vertex genotypes in the sector 
named group B, where G3 and G6 are also included. Ge-
notypes belonging to group B were the most productive. 
No genotype is the vertex or belong to group A. Since 
no environment fell into the sectors of G4, G5, G7, G8 
and G9, this fact denoted that these genotypes were the 
poorest across the environments.

Figure 3 – Mega-Environment Delineation by GGE Biplot for 
maize productivity data (t ha-1) with nine genotypes (G) and 
seven environments (E).

Genotype Evaluation by GGE biplot

The single-arrowed line is the average-environment 
coordination (AEC) abscissa and it points to higher mean 
yield across environments. Thus, G2 had the highest mean 

yield, followed by G1, whereas G9 had the least mean 
yield (Figure 4). The genotypes are therefore classified 
according to their average productivity as follows G2 < 
G1 < G3 < G6 < mean < G5 < G7 < G4 < G8 < G9. Further, 
the double-arrowed line is the AEC ordinate and it points 
to greater variability (poorer stability) in either direction. 
Whereas G4 is highly unstable, G3 was very stable.

Figure 4 – Mean performance and stability of genotypes by 
GGE Biplot with the average-environment coordination (AEC) 
for maize productivity data (t ha-1) with nine genotypes (G) and 
in seven environments (E).

An ideal genotype should have high mean perfor-
mance plus high stability across environments (Yan & 
Tinker, 2006). The genotype should be in the center 
of the concentric circles, corresponding to absolutely 
stability. However, genotypes closer to the concentric 
circles are more desirable than others external to it. 
Consequently, G2 is more desirable and G4 and G9 
are the least undesirable. Further, G2 provided small 
contribution to both G and GE due to its nearness 
to the biplot contribution; G4 provided a significant 
contribution to either G or GE due to its longer vectors 
to the biplot origin. Furthermore, genotypes G1, G2 
and G3 are quite similar, whereas G2 and G9 are very 
different. Their dissimilarity may be due to difference 
in mean yield and/or in GEI.

From the information ratio (IR ≥ 1) for the two mo-
dels containing the patterns in the main components, 
the IR1 = 4.37 (0.624 x 7) in GGE biplot versus IR1 = 
3.18 (0.454 x 7) of AMMI, GGE biplot explained greater 
proportion of the variation of the data than the PC1 of 
the GGE biplot (table 4). In the AMMI analysis, the first 
two components (PC1 and PC2) explained 80.4% of the 
total variation of the G × E, already in the GGE biplot 
analysis, the first two components explained 83.12% of 
the total variation. The biplot GGE was the best model 
for this dataset, it explained greater variations with the 
first two components, therefore, the interpretations of 
the biplot plots are the most reliable to represent the 
patterns in the data on genotypes and environments.
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Table 4 – Singular values and explained variation of the two 
main components (PCs) for the models AMMI and GGE biplot.

Models
Singular values Explained variation

1 2 PC1 PC2

AMMI 2.49 1.17 45.4% 35%

GGE biplot 6.88 3.96 62.4% 20.72%

4 Conclusions

The AMMI and GGE biplot models were effective in 
the study of the genotype VS environment interaction. 
Both methods achieved satisfactory results, the difference 
was minimal from model to model, even so, the GGE 
biplot model was the most efficient because it explai-
ned the greater variation of the first two components 
(83.12%), therefore, to represent the standards in the 
applied data, the interpretations of the biplot graphics 
are the most reliable.
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