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Abstract
In this paper, we introduce a new three parameter skewed distribution. This new class which is obtained by compounding the
normal and Poisson distributions, is presented as an alternative to the class of skew-normal and normal distributions, among
others. Different properties of this new distribution have been investigated. The density and distribution functions of proposed
distribution, are given by a closed expression which allows us to easily compute probabilities, moments and related measurements.
Estimation of the parameters of this new model using maximum likelihood method via an EM-algorithm is given. Finally, some
applications of this new distribution to real data are given.
Keywords: Normal distribution, Poisson distribution, EM-algorithm, Maximum likelihood estimation.

1 Introduction
The normal distribution is probably the most well known statistical distribution and widely used to model many phenomena.
Since the normal distribution is symmetric, skew-normal distributions have been proposed, studied and generalized by many
authors. Azzalini (1985) proposed the skew normal (SN) distribution with the pdf φ(z;λ) = 2φ(z)Φ(λz), for z, λ ∈ R. This
distribution and its variations have been discussed by several authors including Azzalini (1986), Henze (2008), Branco and Dey
(2011), Loperfido (2010), Arnold and Beaver (2002), Balakrishnan (2002), Azzalini and Chiogna (2004), Sharafi and Behboodian
(2008), Elal-Olivero (2010). Azzalini and Valle (1996), Azzalini and Capitanio (1999) and Azzalini and Chiogna (2004) have all
discussed various multivariate forms of skew-normal distributions.

The number of components in a system can be fixed number n. recently, some researcher introduced a system when the number
of components is a random variable N with support 1,2, · · · . In such systems, components may be parallel or series. If the lifetime
of ith component is the continuous random variable Xi, then the lifetime of such a system is defined by Y = max1≤i≤N Xi or
Y = min1≤i≤N Xi, based on whether the components are parallel or series.

By taking a system with series components in which the random variable N has Poisson distribution truncated as zero and the
random variable Xi follows the normal distribution, we introduce a new generalization of the normal distribution.

Recently, some authors focused on these new compounding distribution; Mahmoudi and Mahmoodian (2017) introduced the
normal power series class of distributions in a system with parallel components. This introduced class of distributions contains
normal-geometric, normal-Poisson, normal-logarithmic and normal-binomial models as special case. Roozegar and Nadarajah
(2017) also introduced the power series skew normal class of distributions using this fact that the ith component Xi has SN
distribution and consider Y =

∑N
i=1 Xi.

To begin with, we shall use the following notation throughout this paper : φ(·) for the standard normal probability density
function (pdf), φn(· ;µ,Σ) for the pdf of Nn(µ,Σ) (n -variate normal distribution with mean vector µ and covariance matrix Σ),
Φn(· ;µ,Σ) for the cdf of Nn(µ,Σ), simply Φn(· ;Σ) for the case when µ = 0. Furthermore, for r ∈ N, let 1r and Ir denote the
vector of ones and the identity matrix of dimension r, respectively.

The rest of this paper is organized as follows: In Section 2, we define the class of normal–Poisson (NP) distribution. The
density, hazard rate, survival functions and some of their properties are given in this Section. We derive moments of NP distribution
in Section 3. In Section 4, we derive an expansion for the density of the order statistics. In Section 5, the Shannon entropy is
derived. In Section 6, estimates of the parameters based on a random sample coming from this family of distributions are derived
via an EM algorithm. Applications to two real data sets are given in Section 7. Finally, Section 8 concludes the paper.
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Figure 1: Plots of the NP density function for selected parameter values.

2 The Normal–Poisson Distribution and Some Properties

Let X1,X2, · · · be a sample from a normal distribution with mean µ and variance σ2. Let N be distributed according to a Poisson
distribution truncated at zero, with the probability mass function

P (N = n) =
θn

n! (eθ − 1)
,

where θ > 0. Moreover, N is independent of Xi’s.

Definition 2.1. A random variable X is said to have a normal–Poisson distribution, denoted by X ∼ NP (µ,σ,θ), if

X = min(X1, · · · ,XN ). (2.1)

From the definition in (2.1), we have, for x ∈ R

F (x;µ,σ,θ) = P (X ≤ x) =
∞∑

n=1

P (X ≤ x | N = n)P (N = n)

=
∞∑

n=1

P (min(X1, · · · ,XN ) ≤ x | N = n)P (N = n)

= 1−
∞∑

n=1

(
1− Φ

(
x−µ
σ

))n
θn

n! (eθ − 1)
=

eθ − eθ(1−Φ( x−µ
σ ))

eθ − 1
=

1− e−θΦ( x−µ
σ )

1− e−θ
. (2.2)

Hence the pdf of X is given by

f(x;µ,σ,θ) =
θφ(x−µ

σ )eθ(1−Φ( x−µ
σ ))

σ(eθ − 1)
, (2.3)

where µ ∈ R is the location parameter, σ > 0 is the scale parameter and θ > 0 is the shape parameter, which characterize the
skewness, kurtosis, and unimodality of the distribution.

Remark 2.1. Even when θ < 0, Equation (2.3) is also a density function. We can then define the NP distribution by Equation
(2.3) for any θ ∈ R− {0} .
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Plots of the NP density function for selected parameter values are given in Figure 1. An important characteristic of the NP
distribution is that its density function can be unimodal that makes this distribution many advantages in modelling lifetime data.
The normal distribution with mean µ and variance σ2 is a special case of the NP distribution when θ → 0. When µ = 0 and σ = 1,
we say that X has standard NP distribution with pdf

f(x; θ) =
θφ(x)eθ(1−Φ(x))

(eθ − 1)
.

Proposition 2.1. If X ∼ NP (0,1,θ), then we have

F (x; 0,1,θ) = 1− F (−x; 0,1,− θ) .

Proof. From (2.2), it can be found that

1− F (−x; 0,1,− θ) = 1− 1− eθ(1−Φ(x))

1− e−θ
=

1− e−θΦ(x)

1− e−θ
= F (x; 0,1,θ)

Proposition 2.2. If X1 ∼ NP (0,1,θ1) and X2 ∼ NP (0,1,θ2) are independent random variables, then the stress-strength
parameter, R = P (X1 < X2), is given by

R =
e−θ1θ2

(eθ1 − 1) (eθ2 − 1)

[
e−θ1

(eθ1 − 1)
+

eθ2

θ1 + θ2

(
eθ1+θ2 − 1

)]
.

Proof. The stress-strength parameter is given by

R = P (X1 < X2) =

∫ +∞

−∞
F (y; 0, 1, θ1)f(y; 0,1,θ2)dy

=

∫ +∞

−∞

1− e−θ1Φ(y)

1− e−θ1
× θ2φ (y) eθ2(1−Φ(y))

(eθ2 − 1)
dy.

By change of variable Φ (y) = t and some simple calculation, we have

R =
e−θ1θ2

(eθ1 − 1) (eθ2 − 1)

[
e−θ1

(eθ1 − 1)
+

eθ2

θ1 + θ2

(
eθ1+θ2 − 1

)]
.

Proposition 2.3. The densities of NP distribution can be written as infinite number of linear combination of density of order
statistics. We know that eθ =

∑∞
n=1

θn−1

(n−1)! , therefore

f(x;µ,σ,θ) =

∞∑
n=1

θn

n! (eθ − 1)
gX(1)

(x;n), (2.4)

where gX(1)
(x;n) denotes the density function of X(1) = min (X1,...,Xn) .

The survival and failure rate functions of the NP distribution are given respectively by

S(y;µ,σ,θ) =
eθ(1−Φ( y−µ

σ )) − 1

eθ − 1
, (2.5)

and

h(y;µ,σ,θ) =
θφ(x−µ

σ )eθ(1−Φ( x−µ
σ ))

σ(eθ(1−Φ( y−µ
σ )) − 1)

. (2.6)

Plots of the NP failure rate function for selected parameter values are given in Figure 2. An important characteristic of the NP
distribution is that its failure rate function can be increasing, unimodal-bathtub shaped that makes this distribution flexible in
modeling different types of lifetime data.
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Let X1,X2, · · · be a sample from a normal distribution with mean µ and variance σ2. Let N be distributed according to a Poisson
distribution truncated at zero, with the probability mass function

P (N = n) =
θn
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,

where θ > 0. Moreover, N is independent of Xi’s.

Definition 2.1. A random variable X is said to have a normal–Poisson distribution, denoted by X ∼ NP (µ,σ,θ), if

X = min(X1, · · · ,XN ). (2.1)

From the definition in (2.1), we have, for x ∈ R
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σ

))n
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=

eθ − eθ(1−Φ( x−µ
σ ))

eθ − 1
=

1− e−θΦ( x−µ
σ )

1− e−θ
. (2.2)

Hence the pdf of X is given by

f(x;µ,σ,θ) =
θφ(x−µ

σ )eθ(1−Φ( x−µ
σ ))

σ(eθ − 1)
, (2.3)

where µ ∈ R is the location parameter, σ > 0 is the scale parameter and θ > 0 is the shape parameter, which characterize the
skewness, kurtosis, and unimodality of the distribution.

Remark 2.1. Even when θ < 0, Equation (2.3) is also a density function. We can then define the NP distribution by Equation
(2.3) for any θ ∈ R− {0} .
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Figure 2: Plots of the NP failure rate function for selected parameter values.

3 Quantiles and Moments
The pth quantile of the NP distributions is given by

xp = µ+ σΦ−1

[
1− log(p(eθ − 1) + 1)

θ

]
.

One can use this expression for generating a random sample from NP distributions with generating data from uniform distribution.
Now, by using equation (2.4), we derive moment generating function of X ∼ NP (µ,σ,θ). The moment generating function is

given by

MX(t) =
∞∑

n=1

θn

n! (eθ − 1)
MX(1)

(t). (3.1)

and based on Jamalizadeh and Balakrishnan (2010)

MX(1)
(t) = n exp

(
1

2
σ2t2 + µt

)
Φn−1(−1n−1σt; In−1 + 1n−11

T
n−1).

Therefore

MX(t) = exp

(
1

2
σ2t2 + µt

) ∞∑
n=1

θn

n! (eθ − 1)
× nΦn−1(−1n−1σt; In−1 + 1n−11

T
n−1). (3.2)

Using (3.2), k-th moment of a random variable X can be obtained. But from the direct and simple calculation, we have

µk =

∫ +∞

−∞
xk × θφ(x;µσ)eθ(1−Φ(x;µ,σ))

(eθ − 1)
dx.

By changing of variable to t = Φ(x;µ,σ), we have

µk =

∫ 1

0

(µ+ σΦ−1(t))k
θeθ(1−t)

eθ − 1
dt.

Thus, first two moments are as follows:

µ1 = E(X) =
µe−θ(1 + σ)

eθ − 1
[1− e−θ] +

θe−θ

eθ − 1

√
2σ2 ×

∫ 1

0

erf−1(2t− 1)e−θtdt, (3.3)

3 Mahmoudi, Mahmoodian and Esfandiari : Normal–Poisson distribution as a lifetime distribution of a series system

Plots of the NP density function for selected parameter values are given in Figure 1. An important characteristic of the NP
distribution is that its density function can be unimodal that makes this distribution many advantages in modelling lifetime data.
The normal distribution with mean µ and variance σ2 is a special case of the NP distribution when θ → 0. When µ = 0 and σ = 1,
we say that X has standard NP distribution with pdf

f(x; θ) =
θφ(x)eθ(1−Φ(x))

(eθ − 1)
.

Proposition 2.1. If X ∼ NP (0,1,θ), then we have

F (x; 0,1,θ) = 1− F (−x; 0,1,− θ) .

Proof. From (2.2), it can be found that

1− F (−x; 0,1,− θ) = 1− 1− eθ(1−Φ(x))

1− e−θ
=

1− e−θΦ(x)

1− e−θ
= F (x; 0,1,θ)

Proposition 2.2. If X1 ∼ NP (0,1,θ1) and X2 ∼ NP (0,1,θ2) are independent random variables, then the stress-strength
parameter, R = P (X1 < X2), is given by

R =
e−θ1θ2

(eθ1 − 1) (eθ2 − 1)

[
e−θ1

(eθ1 − 1)
+

eθ2

θ1 + θ2

(
eθ1+θ2 − 1

)]
.

Proof. The stress-strength parameter is given by

R = P (X1 < X2) =

∫ +∞

−∞
F (y; 0, 1, θ1)f(y; 0,1,θ2)dy

=

∫ +∞

−∞

1− e−θ1Φ(y)

1− e−θ1
× θ2φ (y) eθ2(1−Φ(y))

(eθ2 − 1)
dy.

By change of variable Φ (y) = t and some simple calculation, we have

R =
e−θ1θ2

(eθ1 − 1) (eθ2 − 1)

[
e−θ1

(eθ1 − 1)
+

eθ2

θ1 + θ2

(
eθ1+θ2 − 1

)]
.

Proposition 2.3. The densities of NP distribution can be written as infinite number of linear combination of density of order
statistics. We know that eθ =

∑∞
n=1

θn−1

(n−1)! , therefore

f(x;µ,σ,θ) =

∞∑
n=1

θn

n! (eθ − 1)
gX(1)

(x;n), (2.4)

where gX(1)
(x;n) denotes the density function of X(1) = min (X1,...,Xn) .

The survival and failure rate functions of the NP distribution are given respectively by

S(y;µ,σ,θ) =
eθ(1−Φ( y−µ

σ )) − 1

eθ − 1
, (2.5)

and

h(y;µ,σ,θ) =
θφ(x−µ

σ )eθ(1−Φ( x−µ
σ ))

σ(eθ(1−Φ( y−µ
σ )) − 1)

. (2.6)

Plots of the NP failure rate function for selected parameter values are given in Figure 2. An important characteristic of the NP
distribution is that its failure rate function can be increasing, unimodal-bathtub shaped that makes this distribution flexible in
modeling different types of lifetime data.
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3 Quantiles and Moments
The pth quantile of the NP distributions is given by

xp = µ+ σΦ−1

[
1− log(p(eθ − 1) + 1)

θ

]
.

One can use this expression for generating a random sample from NP distributions with generating data from uniform distribution.
Now, by using equation (2.4), we derive moment generating function of X ∼ NP (µ,σ,θ). The moment generating function is

given by

MX(t) =

∞∑
n=1

θn

n! (eθ − 1)
MX(1)

(t). (3.1)

and based on Jamalizadeh and Balakrishnan (2010)

MX(1)
(t) = n exp

(
1

2
σ2t2 + µt

)
Φn−1(−1n−1σt; In−1 + 1n−11

T
n−1).

Therefore

MX(t) = exp

(
1

2
σ2t2 + µt

) ∞∑
n=1

θn

n! (eθ − 1)
× nΦn−1(−1n−1σt; In−1 + 1n−11

T
n−1). (3.2)

Using (3.2), k-th moment of a random variable X can be obtained. But from the direct and simple calculation, we have

µk =

∫ +∞

−∞
xk × θφ(x;µσ)eθ(1−Φ(x;µ,σ))

(eθ − 1)
dx.

By changing of variable to t = Φ(x;µ,σ), we have

µk =

∫ 1

0

(µ+ σΦ−1(t))k
θeθ(1−t)

eθ − 1
dt.

Thus, first two moments are as follows:

µ1 = E(X) =
µe−θ(1 + σ)

eθ − 1
[1− e−θ] +

θe−θ

eθ − 1

√
2σ2 ×

∫ 1

0

erf−1(2t− 1)e−θtdt, (3.3)
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µ2 = E(X2) =
θe−θ

eθ − 1

[
µ2(1 + σ2) + 2µσ

θ
[−e−θ] + 2

√
2µ(σ2 + σ3)

×
∫ 1

0

erf−1(2t− 1)e−θtdt+ 2σ4

∫ 1

0

[erf−1(2t− 1)]2e−θtdt

]
, (3.4)

Table 1 gives the first four moments, variance, skewness and kurtosis of the NP (0,1,θ) for different values θ. Figure 3 shows the
skewness and kurtosis plot of the NP (0,1,θ) for different values θ.

Table 1: The first four moments, variance, skewness and kurtosis of NP distribution for µ = 0, σ = 1.

θ = −3 θ = −1 θ = −0.3 θ = 0.01 θ = 0.3 θ = 1 θ = 3 θ = 10
E(X) 0.7541 -0.2781 0.0845 -0.0028 -0.0845 -0.2781 -0.7541 -1.5045
E(X2) 1.3477 1.0450 1.0041 1.0000 1.0041 1.0450 1.3477 2.6533
E(X3) 2.0013 -0.7003 0.2114 -0.0071 -0.2114 -0.7003 -2.0013 -5.2127
E(X4) 4.5372 3.1954 3.0179 3.0000 3.0179 3.1954 4.5372 11.2262
V AR 0.7790 0.9677 0.9970 1.0000 0.9970 0.9677 0.7790 0.3898
SK -0.2764 0.1349 -0.0421 0.0014 0.0421 0.1349 0.2764 -0.1973
KUR 3.5076 3.0792 3.0074 3.0000 3.0074 3.0792 3.5076 3.4236
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Figure 3: Plots of skewness and kurtosis of NP distribution for selected parameter values θ.

4 Order statistics

Let X1,..,Xn be a random sample from NP distribution. The pdf of the ith order statistic, X(i) , is given by

f(i)(x;µ,σ,θ) =
n!f(x;µ,σ,θ)

(n− i)!(i− 1)!
[1− F (x;µ,σ,θ)]

n−i
[F (x;µ,σ,θ)]

i−1
. (4.1)

By using the binomial series expansion we have

f(i)(x) =
n!f(x;µ,σ,θ)

(n− i)!(i− 1)!

∞∑
j=0

(−1)j
(
n− i

j

)
[F (x;µ,σ,θ)]

j+i−1
.

The moments of the probability density function (4.1) cannot be obtained in a closed form but the values are derived by using
numerical computation. Figure 4 shows the expected values of the order statistics plot from NP (0,1,θ) for n = 40, i = 1,10,20
and different values θ.

3 Quantiles and Moments
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Figure 4: Plots of the expected values of the order statistics from NP (0,1,θ) for n = 40, i = 1,10,20.

5 Shannon entropy

Let X be a random variable from NP (µ,σ,θ). Then, the Shannon entropy of X is given by

H(x) = −E (log(f(X;µ, σ, θ))) = −
∫ +∞

−∞
f(x;µ, σ, θ)× log

[
θφ

(
x−µ
σ

)
eθ(1−Φ( x−µ

σ ))

σ(eθ − 1)

]
dx

= − log(θ) + log(σ(eθ − 1))−
∫ +∞

−∞
f(x;µ, σ, θ) log

[
φ

(
x− µ

σ

)]
dx

−θ

∫ +∞

−∞
f(x;µ, σ, θ)×

[
1− Φ

(
x− µ

σ

)]
dx.

We can write the first integral as

∫ +∞

−∞
f(x;µ, σ, θ) log

[
φ

(
x− µ

σ

)]
dx = − log(

√
2π)− 1

2σ2

[
E(X2)− 2µE(X) + µ2

]
,

Where E(X2) and E(X) follow from (3.3) and (3.4). We can write the second integral as

∫ +∞

−∞
f(x;µ, σ, θ)×

(
1− Φ

(
x− µ

σ

))
dx =

eθ (θ − 1)− 1

θ(eθ − 1)
.

Finally, we obtain

H(x) = − log(θ) + log(σ(eθ − 1)) + log(
√
2π)

+
1

2σ2

[
E(X2)− 2µE(X) + µ2

]
− eθ (θ − 1)− 1

(eθ − 1)
.

6 Estimation and inference

Let x1, · · · , xn be n observations from NP (µ,σ,θ) and Ψ = (µ,σ,θ)T be the parameter vector. The log-likelihood function is
given by

ln(Ψ) = n log(θ)− n log
(
σ(eθ − 1)

)
+

n∑
i=1

log

(
φ

(
xi − µ

σ

))
+ θ

n∑
i=1

(
1− Φ

(
xi − µ

σ

))
.
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µ2 = E(X2) =
θe−θ

eθ − 1

[
µ2(1 + σ2) + 2µσ

θ
[−e−θ] + 2

√
2µ(σ2 + σ3)

×
∫ 1

0

erf−1(2t− 1)e−θtdt+ 2σ4

∫ 1

0

[erf−1(2t− 1)]2e−θtdt

]
, (3.4)

Table 1 gives the first four moments, variance, skewness and kurtosis of the NP (0,1,θ) for different values θ. Figure 3 shows the
skewness and kurtosis plot of the NP (0,1,θ) for different values θ.

Table 1: The first four moments, variance, skewness and kurtosis of NP distribution for µ = 0, σ = 1.

θ = −3 θ = −1 θ = −0.3 θ = 0.01 θ = 0.3 θ = 1 θ = 3 θ = 10
E(X) 0.7541 -0.2781 0.0845 -0.0028 -0.0845 -0.2781 -0.7541 -1.5045
E(X2) 1.3477 1.0450 1.0041 1.0000 1.0041 1.0450 1.3477 2.6533
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Figure 3: Plots of skewness and kurtosis of NP distribution for selected parameter values θ.

4 Order statistics

Let X1,..,Xn be a random sample from NP distribution. The pdf of the ith order statistic, X(i) , is given by

f(i)(x;µ,σ,θ) =
n!f(x;µ,σ,θ)

(n− i)!(i− 1)!
[1− F (x;µ,σ,θ)]

n−i
[F (x;µ,σ,θ)]

i−1
. (4.1)

By using the binomial series expansion we have

f(i)(x) =
n!f(x;µ,σ,θ)

(n− i)!(i− 1)!

∞∑
j=0

(−1)j
(
n− i

j

)
[F (x;µ,σ,θ)]

j+i−1
.

The moments of the probability density function (4.1) cannot be obtained in a closed form but the values are derived by using
numerical computation. Figure 4 shows the expected values of the order statistics plot from NP (0,1,θ) for n = 40, i = 1,10,20
and different values θ.

4  Order statistics
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5 Shannon entropy

Let X be a random variable from NP (µ,σ,θ). Then, the Shannon entropy of X is given by

H(x) = −E (log(f(X;µ, σ, θ))) = −
∫ +∞

−∞
f(x;µ, σ, θ)× log

[
θφ

(
x−µ
σ

)
eθ(1−Φ( x−µ

σ ))

σ(eθ − 1)

]
dx

= − log(θ) + log(σ(eθ − 1))−
∫ +∞

−∞
f(x;µ, σ, θ) log

[
φ

(
x− µ

σ

)]
dx

−θ

∫ +∞

−∞
f(x;µ, σ, θ)×

[
1− Φ

(
x− µ

σ

)]
dx.

We can write the first integral as

∫ +∞

−∞
f(x;µ, σ, θ) log

[
φ

(
x− µ

σ

)]
dx = − log(

√
2π)− 1

2σ2

[
E(X2)− 2µE(X) + µ2

]
,

Where E(X2) and E(X) follow from (3.3) and (3.4). We can write the second integral as

∫ +∞

−∞
f(x;µ, σ, θ)×

(
1− Φ

(
x− µ

σ

))
dx =

eθ (θ − 1)− 1

θ(eθ − 1)
.

Finally, we obtain

H(x) = − log(θ) + log(σ(eθ − 1)) + log(
√
2π)

+
1

2σ2

[
E(X2)− 2µE(X) + µ2

]
− eθ (θ − 1)− 1

(eθ − 1)
.

6 Estimation and inference

Let x1, · · · , xn be n observations from NP (µ,σ,θ) and Ψ = (µ,σ,θ)T be the parameter vector. The log-likelihood function is
given by

ln(Ψ) = n log(θ)− n log
(
σ(eθ − 1)

)
+

n∑
i=1

log

(
φ

(
xi − µ

σ

))
+ θ

n∑
i=1

(
1− Φ

(
xi − µ

σ

))
.7 Mahmoudi, Mahmoodian and Esfandiari : Normal–Poisson distribution as a lifetime distribution of a series system

The maximum likelihood estimation (MLE) of Ψ, say Ψ̂, is obtained by solving the nonlinear system of equations
(

∂ln
∂µ ,∂ln∂σ ,∂ln∂θ

)T

=

0, where

∂ln(Ψ)

∂µ
=

1

σ2

n∑
i=1

(xi − µ) +
θ

σ

n∑
i=1

φ

(
xi − µ

σ

)
, (6.1)

∂ln(Ψ)

∂σ
= −n

σ
+

1

σ3

n∑
i=1

(xi − µ)2 +
θ

σ2

n∑
i=1

(xi − µ)φ

(
xi − µ

σ

)
, (6.2)

∂ln(Ψ)

∂θ
=

n

θ
− n(1− e−θ)−1 +

n∑
i=1

(
1− Φ

(
xi − µ

σ

))
. (6.3)

Clearly, MLEs cannot be obtained in closed forms. The observed information matrix is obtained for approximate confidence
intervals and hypothesis tests of on the model parameters. The 3× 3 observed information matrix is given by

In (Ψ) = −




Iµµ Iµσ Iµθ
Iµσ Iσσ Iσθ
Iµθ Iσθ Iθθ


 ,

where

Iµµ = − n

σ2
+

θ

σ3

n∑
i=1

(xi − µ)φ

(
xi − µ

σ

)
,

Iµσ = − 2

σ3

n∑
i=1

(xi − µ)− θ

σ2

n∑
i=1

φ

(
xi − µ

σ

)
+

θ

σ4

n∑
i=1

(xi − µ)2φ

(
xi − µ

σ

)
,

Iµθ =
1

σ

n∑
i=1

φ

(
xi − µ

σ

)
,

Iσσ =
n

σ2
− 3

σ4

n∑
i=1

(xi − µ)2 − 2θ

σ3

n∑
i=1

(xi − µ)φ

(
xi − µ

σ

)
+

θ

σ5

n∑
i=1

(xi − µ)3φ

(
xi − µ

σ

)
,

Iσθ =
1

σ2

n∑
i=1

(xi − µ)φ

(
xi − µ

σ

)
,

Iθθ = − n

θ2
+ ne−θ(1− e−θ)−2.

It is well-known that under regularity conditions, the asymptotic distribution of
√
n
(
Ψ̂−Ψ

)
is N3(0,Jn(Ψ)−1), where

Jn(Ψ) = limn→∞ = n−1In(Ψ). Therefore, an 100(1− γ) asymptotic confidence interval for each parameter Ψr is given by

ACIr =
(
Ψ̂r − Zγ/2

√
Îrr,Ψ̂r + Zγ/2

√
Îrr

)
,

where Îrr is the (r,r) diagonal element of In(Ψ̂)−1 for r = 1,2,3 and Zγ/2 is the quantile 1 − γ/2 of the standard normal
distribution.

The solution of the three non-linear normal equations in (6.1)-(6.3) is needed using a numerical method. We may use the
standard methods such as Newton-Raphson, Nelder-Mead and BFGS, but they have their usual problem of convergence. If
the initial guesses are not close to the optimal value, the iteration may not converge. Due to this reason, we propose to use
EM-algorithm to compute the MLEs. Suppose, {(x1,z1),...,(xn,zn)} is a random sample of size n from (X,N). We define a
hypothetical complete-data distribution with a joint probability density function in the form

g(z,x;Ψ) =
θz

σz! (eθ − 1)
zφ

(
x− µ

σ

)(
1− Φ

(
x− µ

σ

))z−1

,

where µ ∈ R, σ > 0, θ ∈ R− {0}, x ∈ R and z ∈ N. The probability density function of Z given X = x is given by

g(z | x) = g(z,x;Ψ)

f(x)
=

θz−1z
(
1− Φ

(
x−µ
σ

))z−1

z!eθ(1−Φ( x−µ
σ ))

,

5 Shannon entropy

6  Estimation and inference
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and since (1 + θ)eθ =
∑∞

z=1
z2θz−1

z! , the expected value of Z | X = x, is given by

E(Z | X = x) =

∞∑
z=1

θz−1z2
(
1− Φ

(
x−µ
σ

))z−1

z!eθ(1−Φ( x−µ
σ ))

=
1

eθ(1−Φ( x−µ
σ ))

∞∑
z=1

z2
(
θ
(
1− Φ

(
x−µ
σ

)))z−1

z!

= 1 + θ

(
1− Φ

(
x− µ

σ

))
.

By using the maximum likelihood estimation over Ψ, with the missing Z’s replaced by their conditional expectations given above,
the M-step of EM cycle is completed. The log-likelihood of the model parameters for the complete data set is

l∗n (x,z;µ,σ,θ) ∝
n∑

i=1

zi log θ − n log σ − 1

2σ2

n∑
i=1

(xi − µ)
2

+

n∑
i=1

(zi − 1) log

(
1− Φ

(
xi − µ

σ

))
− n log

(
eθ − 1

)
.

The components of the score function
(

∂l∗n
∂µ ,

∂l∗n
∂σ ,

∂l∗n
∂θ

)
are given by

∂l∗n
∂µ

=
1

σ2

n∑
i=1

(xi − µ) +
1

σ

n∑
i=1

(zi − 1)
φ
(
xi−µ
σ

)

1− Φ
(
xi−µ
σ

) ,

∂l∗n
∂σ

= −n

σ
+

1

σ3

n∑
i=1

(xi − µ)
2
+

1

σ2

n∑
i=1

(zi − 1)
(xi − µ)φ

(
xi−µ
σ

)

1− Φ
(
xi−µ
σ

) ,

∂l∗n
∂θ

=
1

θ

n∑
i=1

zi −
neθ

eθ − 1
.

The maximum likelihood estimates can be obtained from the iterative algorithm given by

1

σ̂(h)

n∑
i=1

(
xi − µ̂(h+1)

)
+

n∑
i=1

(
ẑ
(h)
i − 1

) φ
(

xi−µ̂(h+1)

σ̂(h)

)

1− Φ
(

xi−µ̂(h+1)

σ̂(h)

) = 0,

n− 1(
σ̂(h+1))

)2
n∑

i=1

(
xi − µ̂(h)

)2

− 1

σ̂(h+1)

n∑
i=1

(
ẑ
(h)
i − 1

) (
xi − µ̂(h)

)
φ
(

xi−µ̂(h)

σ̂(h+1)

)

1− Φ
(

xi−µ̂(h)

σ̂(h+1)

) = 0,

θ̂(h+1) =
eθ̂

(h+1) − 1

neθ̂(h+1)

n∑
i=1

ẑ
(h)
i ,

where µ̂(h), σ̂(h) and θ̂(h) are found numerically. Here, for i = 1,...,n, we have that

ẑ
(h)
i = 1 + θ̂(h)

(
1− Φ

(
xi − µ̂(h)

σ̂(h)

))
.

In the rest of this section, we verify the performance of the proposed estimator of, µ, σ and θ of the proposed EM method for NP
distribution. We simulate 1000 times under the NP distribution with different sets of parameters and sample sizes n = 50, 100, 300
and 500. For each sample size, we compute the MLEs by EM-method. We also compute the root of mean square errors (RMSE),
standard errors (SE) and covariances of the MLEs of the EM-algorithm. The results for the NP distribution are reported in Tables 2.
Some of the points are quite clear from the simulation results: (i) Convergence has been achieved in all cases and this emphasizes
the numerical stability of the EM-algorithm. (ii) The differences between the average estimates and the true values are almost
small. (iii) These results suggest that the EM estimates have performed consistently. (iv) As the sample size increases, the root of
mean square errors and the standard errors of the MLEs decrease.
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The maximum likelihood estimation (MLE) of Ψ, say Ψ̂, is obtained by solving the nonlinear system of equations
(

∂ln
∂µ ,∂ln∂σ ,∂ln∂θ

)T

=

0, where

∂ln(Ψ)

∂µ
=

1

σ2

n∑
i=1

(xi − µ) +
θ

σ

n∑
i=1

φ

(
xi − µ

σ

)
, (6.1)

∂ln(Ψ)

∂σ
= −n

σ
+

1

σ3

n∑
i=1

(xi − µ)2 +
θ

σ2

n∑
i=1

(xi − µ)φ

(
xi − µ

σ

)
, (6.2)

∂ln(Ψ)

∂θ
=

n

θ
− n(1− e−θ)−1 +

n∑
i=1

(
1− Φ

(
xi − µ

σ

))
. (6.3)

Clearly, MLEs cannot be obtained in closed forms. The observed information matrix is obtained for approximate confidence
intervals and hypothesis tests of on the model parameters. The 3× 3 observed information matrix is given by

In (Ψ) = −




Iµµ Iµσ Iµθ
Iµσ Iσσ Iσθ
Iµθ Iσθ Iθθ


 ,

where

Iµµ = − n

σ2
+

θ

σ3

n∑
i=1

(xi − µ)φ

(
xi − µ

σ

)
,

Iµσ = − 2

σ3

n∑
i=1

(xi − µ)− θ

σ2

n∑
i=1

φ

(
xi − µ

σ

)
+

θ

σ4

n∑
i=1

(xi − µ)2φ

(
xi − µ

σ

)
,

Iµθ =
1

σ

n∑
i=1

φ

(
xi − µ

σ

)
,

Iσσ =
n

σ2
− 3

σ4

n∑
i=1

(xi − µ)2 − 2θ

σ3

n∑
i=1

(xi − µ)φ

(
xi − µ

σ

)
+

θ

σ5

n∑
i=1

(xi − µ)3φ

(
xi − µ

σ

)
,

Iσθ =
1

σ2

n∑
i=1

(xi − µ)φ

(
xi − µ

σ

)
,

Iθθ = − n

θ2
+ ne−θ(1− e−θ)−2.

It is well-known that under regularity conditions, the asymptotic distribution of
√
n
(
Ψ̂−Ψ

)
is N3(0,Jn(Ψ)−1), where

Jn(Ψ) = limn→∞ = n−1In(Ψ). Therefore, an 100(1− γ) asymptotic confidence interval for each parameter Ψr is given by

ACIr =
(
Ψ̂r − Zγ/2

√
Îrr,Ψ̂r + Zγ/2

√
Îrr

)
,

where Îrr is the (r,r) diagonal element of In(Ψ̂)−1 for r = 1,2,3 and Zγ/2 is the quantile 1 − γ/2 of the standard normal
distribution.

The solution of the three non-linear normal equations in (6.1)-(6.3) is needed using a numerical method. We may use the
standard methods such as Newton-Raphson, Nelder-Mead and BFGS, but they have their usual problem of convergence. If
the initial guesses are not close to the optimal value, the iteration may not converge. Due to this reason, we propose to use
EM-algorithm to compute the MLEs. Suppose, {(x1,z1),...,(xn,zn)} is a random sample of size n from (X,N). We define a
hypothetical complete-data distribution with a joint probability density function in the form

g(z,x;Ψ) =
θz

σz! (eθ − 1)
zφ

(
x− µ

σ

)(
1− Φ

(
x− µ

σ

))z−1

,

where µ ∈ R, σ > 0, θ ∈ R− {0}, x ∈ R and z ∈ N. The probability density function of Z given X = x is given by

g(z | x) = g(z,x;Ψ)

f(x)
=

θz−1z
(
1− Φ

(
x−µ
σ

))z−1

z!eθ(1−Φ( x−µ
σ ))

,
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Table 2: The averages of the 1000 MLE’s, mean of the simulated root of mean square errors, mean of simulated standard errors
and mean of the simulated covariances of EM estimators for NP distribution.

Average estimators RMSE SE Cov
n (µ,σ,θ) µ̂ σ̂ θ̂ µ̂ σ̂ θ̂ µ̂ σ̂ θ̂ (µ̂,σ̂)) (µ̂,θ̂) (σ̂,θ̂)

(0.0, 1.0, -1.0) -0.0741 1.0103 -1.2628 0.5032 0.1301 0.2982 0.2227 0.1235 0.6131 -0.0118 0.1376 -0.02821
(0.0, 1.0, 0.5) -0.0493 0.8693 0.7323 0.1010 0.1430 0.3171 0.0882 0.0580 0.2160 0.0021 0.0104 0.0020

50 (0.0, 1.0, 1.0) 0.0276 0.9979 1.1047 0.2004 0.0747 0.6387 0.1986 0.0747 0.6303 0.0058 0.1080 0.0134
(0.0, 1.0,2.0) -0.0562 0.9922 1.8759 0.4116 0.1322 1.5530 0.4079 0.1321 1.5488 0.0371 0.5852 0.1245
(0.0, 1.0, 5.0) -0.0142 0.9864 5.5179 0.5468 0.1795 3.0369 0.5469 0.1790 2.9940 0.0876 1.5472 0.4250
(0.0, 1.0, -1.0) -0.0667 1.0073 -1.1713 0.3127 0.2112 1.454 0.2014 0.0667 0.6234 -0.0073 0.1285 -0.0214
(0.0, 1.0,0.5) -0.0277 0.9054 0.6971 0.0912 0.1012 0.2878 0.0869 0.0360 0.2099 0.0016 0.0128 0.0015

100 (0.0, 1.0, 1.0) 0.0180 1.0043 1.0677 0.1710 0.0482 0.5787 0.1701 0.0480 0.5750 0.0044 0.0915 0.0131
(0.0, 1.0, 2.0) -0.0283 0.9947 1.9266 0.3463 0.1058 1.3190 0.3453 0.1057 1.3176 0.0287 0.4315 0.1016
(0.0, 1.0, 5.0) 0.0169 0.9946 5.2860 0.5058 -0.0054 0.2860 0.5057 0.1609 2.6908 0.0761 1.3104 0.3766
(0.0, 1.0, -1.0) -0.0561 1.0016 -1.0981 0.2873 0.1897 1.372 0.1871 0.0424 0.5821 -0.0048 0.1201 -0.0166
(0.0, 1.0, 0.5) 0.0007 0.9311 0.6768 0.0662 0.0705 0.2596 0.0662 0.0150 0.1902 0.0008 0.0102 0.0016

300 (0.0, 1.0, 1.0) 0.0197 1.0040 1.0824 0.1568 0.0373 0.5492 0.1556 0.0371 0.5432 0.0032 0.0810 0.0103
(0.0, 1.0, 2.0) 0.0035 1.0046 2.0353 0.2687 0.0739 1.0202 0.2688 0.0738 1.0201 0.0167 0.2663 0.0605
(0.0, 1.0, 5.0) -0.0534 0.9845 4.8726 0.3311 0.1002 1.6897 0.3270 0.0991 1.6857 0.0313 0.5414 0.1563
(0.0, 1.0, -1.0) -0.0424 1.0040 -1.0665 0.2754 0.1765 1.381 0.1769 0.0382 0.5671 -0.0041 0.1128 -0.0102
(0.0, 1.0, 0.5) -0.0068 0.9237 0.6742 0.0554 0.0794 0.2620 0.0550 0.0219 0.1958 0.0006 0.0094 0.0018

500 (0.0, 1.0, 1.0) 0.0001 0.9873 1.0392 0.2196 0.1055 0.6364 0.2197 0.1048 0.6355 0.0088 0.1064 0.0161
(0.0, 1.0, 2.0) 0.0019 1.0033 2.0232 0.2345 0.0632 0.8698 0.2346 0.0631 0.8699 0.0128 0.1996 0.0455
(0.0, 1.0, 5.0) -0.0208 0.9937 5.0709 0.3311 0.1002 1.6897 0.3270 0.0991 1.6857 0.0313 0.5414 0.1563

7 Applications

In this section, the NP distribution is fitted to three real data sets and also compared the fitted NP with two relative models, normal
(N) and skew-normal (SN) distributions with pdf 2

σφ
(
x−µ
σ

)
Φ
(
αx−µ

σ

)
, to show the superiority of the NP distribution. The first

data set concerning the plasma ferritin concentration 102 male and 100 female athletes collected at the Australian Institute of
Sport. We estimate parameters by numerically maximizing the likelihood function. The variance covariance matrix of the MLEs
under the NP distribution is computed as




0.2844 0.08030 0.01995
0.08030 0.0458 0.0045
0.01995 0.0045 0.0018


 .

The MLEs of the parameters, -2log-likelihood, AIC (Akaike Information Criterion), the Kolmogorov-Smirnov test statistic
(K-S) and the associated p-value are displayed in Table 3 for this data set. The results for these data set show that the NP
distribution provides a better fit to this data set than the N and SN distributions. Also this conclusion is confirmed from the plots of
the fitted densities in Figure 5.

Table 3: MLEs, -2 Log L, K-S, p-value and AIC for plasma ferritin concentration.

Dist MLE -2 Log L K-S p-value AIC
NP µ̂ = 111.7220, σ̂ = 49.9121,θ̂ = 3.0089 2106.9180 0.0824 0.1288 2112.9180
N µ̂ = 76.8762, σ̂ = 47.3835 2131.994 0.1217 0.0050 2135.994

SN µ̂ = 75.9954, σ̂ = 47.3919,α̂ = 0.0234 2131.994 0.1217 0.0050 2137.994
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Figure 5: Plots of fitted NP, N and SN for plasma ferritin concentration data.
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and since (1 + θ)eθ =
∑∞

z=1
z2θz−1

z! , the expected value of Z | X = x, is given by

E(Z | X = x) =

∞∑
z=1

θz−1z2
(
1− Φ

(
x−µ
σ

))z−1

z!eθ(1−Φ( x−µ
σ ))

=
1

eθ(1−Φ( x−µ
σ ))

∞∑
z=1

z2
(
θ
(
1− Φ

(
x−µ
σ

)))z−1

z!

= 1 + θ

(
1− Φ

(
x− µ

σ

))
.

By using the maximum likelihood estimation over Ψ, with the missing Z’s replaced by their conditional expectations given above,
the M-step of EM cycle is completed. The log-likelihood of the model parameters for the complete data set is

l∗n (x,z;µ,σ,θ) ∝
n∑

i=1

zi log θ − n log σ − 1

2σ2

n∑
i=1

(xi − µ)
2

+

n∑
i=1

(zi − 1) log

(
1− Φ

(
xi − µ

σ

))
− n log

(
eθ − 1

)
.

The components of the score function
(

∂l∗n
∂µ ,

∂l∗n
∂σ ,

∂l∗n
∂θ

)
are given by

∂l∗n
∂µ

=
1

σ2

n∑
i=1

(xi − µ) +
1

σ

n∑
i=1

(zi − 1)
φ
(
xi−µ
σ

)

1− Φ
(
xi−µ
σ

) ,

∂l∗n
∂σ

= −n

σ
+

1

σ3

n∑
i=1

(xi − µ)
2
+

1

σ2

n∑
i=1

(zi − 1)
(xi − µ)φ

(
xi−µ
σ

)

1− Φ
(
xi−µ
σ

) ,

∂l∗n
∂θ

=
1

θ

n∑
i=1

zi −
neθ

eθ − 1
.

The maximum likelihood estimates can be obtained from the iterative algorithm given by

1

σ̂(h)

n∑
i=1

(
xi − µ̂(h+1)

)
+

n∑
i=1

(
ẑ
(h)
i − 1

) φ
(

xi−µ̂(h+1)

σ̂(h)

)

1− Φ
(

xi−µ̂(h+1)

σ̂(h)

) = 0,

n− 1(
σ̂(h+1))

)2
n∑

i=1

(
xi − µ̂(h)

)2

− 1

σ̂(h+1)

n∑
i=1

(
ẑ
(h)
i − 1

) (
xi − µ̂(h)

)
φ
(

xi−µ̂(h)

σ̂(h+1)

)

1− Φ
(

xi−µ̂(h)

σ̂(h+1)

) = 0,

θ̂(h+1) =
eθ̂

(h+1) − 1

neθ̂(h+1)

n∑
i=1

ẑ
(h)
i ,

where µ̂(h), σ̂(h) and θ̂(h) are found numerically. Here, for i = 1,...,n, we have that

ẑ
(h)
i = 1 + θ̂(h)

(
1− Φ

(
xi − µ̂(h)

σ̂(h)

))
.

In the rest of this section, we verify the performance of the proposed estimator of, µ, σ and θ of the proposed EM method for NP
distribution. We simulate 1000 times under the NP distribution with different sets of parameters and sample sizes n = 50, 100, 300
and 500. For each sample size, we compute the MLEs by EM-method. We also compute the root of mean square errors (RMSE),
standard errors (SE) and covariances of the MLEs of the EM-algorithm. The results for the NP distribution are reported in Tables 2.
Some of the points are quite clear from the simulation results: (i) Convergence has been achieved in all cases and this emphasizes
the numerical stability of the EM-algorithm. (ii) The differences between the average estimates and the true values are almost
small. (iii) These results suggest that the EM estimates have performed consistently. (iv) As the sample size increases, the root of
mean square errors and the standard errors of the MLEs decrease.
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Table 2: The averages of the 1000 MLE’s, mean of the simulated root of mean square errors, mean of simulated standard errors
and mean of the simulated covariances of EM estimators for NP distribution.

Average estimators RMSE SE Cov
n (µ,σ,θ) µ̂ σ̂ θ̂ µ̂ σ̂ θ̂ µ̂ σ̂ θ̂ (µ̂,σ̂)) (µ̂,θ̂) (σ̂,θ̂)

(0.0, 1.0, -1.0) -0.0741 1.0103 -1.2628 0.5032 0.1301 0.2982 0.2227 0.1235 0.6131 -0.0118 0.1376 -0.02821
(0.0, 1.0, 0.5) -0.0493 0.8693 0.7323 0.1010 0.1430 0.3171 0.0882 0.0580 0.2160 0.0021 0.0104 0.0020

50 (0.0, 1.0, 1.0) 0.0276 0.9979 1.1047 0.2004 0.0747 0.6387 0.1986 0.0747 0.6303 0.0058 0.1080 0.0134
(0.0, 1.0,2.0) -0.0562 0.9922 1.8759 0.4116 0.1322 1.5530 0.4079 0.1321 1.5488 0.0371 0.5852 0.1245
(0.0, 1.0, 5.0) -0.0142 0.9864 5.5179 0.5468 0.1795 3.0369 0.5469 0.1790 2.9940 0.0876 1.5472 0.4250
(0.0, 1.0, -1.0) -0.0667 1.0073 -1.1713 0.3127 0.2112 1.454 0.2014 0.0667 0.6234 -0.0073 0.1285 -0.0214
(0.0, 1.0,0.5) -0.0277 0.9054 0.6971 0.0912 0.1012 0.2878 0.0869 0.0360 0.2099 0.0016 0.0128 0.0015

100 (0.0, 1.0, 1.0) 0.0180 1.0043 1.0677 0.1710 0.0482 0.5787 0.1701 0.0480 0.5750 0.0044 0.0915 0.0131
(0.0, 1.0, 2.0) -0.0283 0.9947 1.9266 0.3463 0.1058 1.3190 0.3453 0.1057 1.3176 0.0287 0.4315 0.1016
(0.0, 1.0, 5.0) 0.0169 0.9946 5.2860 0.5058 -0.0054 0.2860 0.5057 0.1609 2.6908 0.0761 1.3104 0.3766
(0.0, 1.0, -1.0) -0.0561 1.0016 -1.0981 0.2873 0.1897 1.372 0.1871 0.0424 0.5821 -0.0048 0.1201 -0.0166
(0.0, 1.0, 0.5) 0.0007 0.9311 0.6768 0.0662 0.0705 0.2596 0.0662 0.0150 0.1902 0.0008 0.0102 0.0016

300 (0.0, 1.0, 1.0) 0.0197 1.0040 1.0824 0.1568 0.0373 0.5492 0.1556 0.0371 0.5432 0.0032 0.0810 0.0103
(0.0, 1.0, 2.0) 0.0035 1.0046 2.0353 0.2687 0.0739 1.0202 0.2688 0.0738 1.0201 0.0167 0.2663 0.0605
(0.0, 1.0, 5.0) -0.0534 0.9845 4.8726 0.3311 0.1002 1.6897 0.3270 0.0991 1.6857 0.0313 0.5414 0.1563
(0.0, 1.0, -1.0) -0.0424 1.0040 -1.0665 0.2754 0.1765 1.381 0.1769 0.0382 0.5671 -0.0041 0.1128 -0.0102
(0.0, 1.0, 0.5) -0.0068 0.9237 0.6742 0.0554 0.0794 0.2620 0.0550 0.0219 0.1958 0.0006 0.0094 0.0018

500 (0.0, 1.0, 1.0) 0.0001 0.9873 1.0392 0.2196 0.1055 0.6364 0.2197 0.1048 0.6355 0.0088 0.1064 0.0161
(0.0, 1.0, 2.0) 0.0019 1.0033 2.0232 0.2345 0.0632 0.8698 0.2346 0.0631 0.8699 0.0128 0.1996 0.0455
(0.0, 1.0, 5.0) -0.0208 0.9937 5.0709 0.3311 0.1002 1.6897 0.3270 0.0991 1.6857 0.0313 0.5414 0.1563

7 Applications

In this section, the NP distribution is fitted to three real data sets and also compared the fitted NP with two relative models, normal
(N) and skew-normal (SN) distributions with pdf 2

σφ
(
x−µ
σ

)
Φ
(
αx−µ

σ

)
, to show the superiority of the NP distribution. The first

data set concerning the plasma ferritin concentration 102 male and 100 female athletes collected at the Australian Institute of
Sport. We estimate parameters by numerically maximizing the likelihood function. The variance covariance matrix of the MLEs
under the NP distribution is computed as




0.2844 0.08030 0.01995
0.08030 0.0458 0.0045
0.01995 0.0045 0.0018


 .

The MLEs of the parameters, -2log-likelihood, AIC (Akaike Information Criterion), the Kolmogorov-Smirnov test statistic
(K-S) and the associated p-value are displayed in Table 3 for this data set. The results for these data set show that the NP
distribution provides a better fit to this data set than the N and SN distributions. Also this conclusion is confirmed from the plots of
the fitted densities in Figure 5.

Table 3: MLEs, -2 Log L, K-S, p-value and AIC for plasma ferritin concentration.

Dist MLE -2 Log L K-S p-value AIC
NP µ̂ = 111.7220, σ̂ = 49.9121,θ̂ = 3.0089 2106.9180 0.0824 0.1288 2112.9180
N µ̂ = 76.8762, σ̂ = 47.3835 2131.994 0.1217 0.0050 2135.994

SN µ̂ = 75.9954, σ̂ = 47.3919,α̂ = 0.0234 2131.994 0.1217 0.0050 2137.994
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Figure 5: Plots of fitted NP, N and SN for plasma ferritin concentration data.
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The second data set is given by Birnbaum and Saunders (1969) that refers to fatigue life of 6061-T6 aluminium coupons cut
parallel to the direction of rolling and oscillated at 18 cycles per second. The data set consists of 100 observations. The variance
covariance matrix of the MLEs under the NP distribution is computed as




0.0134 0.0042 0.0231
0.0042 0.0015 0.0068
0.0231 0.0068 0.0427


 .

Table 4 gives the MLEs of the parameters, -2log-likelihood, AIC, the K-S test statistic and the associated P-value for the
second data set. The fitted densities functions of NP, N and SN models is displayed in Figure 6. The results for this data set
show that the NP distribution is a good competitor for the normal and SN distributions. Also the plots of the densities in Figure 6
confirmed this conclusion.

Table 4: MLEs, −2LogL, K-S, p-value and AIC for time between failures data.

Dist MLE -2 Log L K-S p-value AIC
NP µ̂ = 9.6705, σ̂ = 2.7745,θ̂ = 4.6120 442.0941 0.0481 0.9749 446.0941
N µ̂ = 6.8780, σ̂ = 2.2499 444.1903 0.0687 0.7325 448.1903

SN µ̂ = 6.8362, σ̂ = 2.2300,α̂ = −0.0018 444.1903 0.0701 0.7012 450.1903
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Figure 6: Plots of fitted NP, N and SN for fatigue life data.

The third data set from Bjerkedal (1960), represents the survival time in days of 72 guinea pigs infected with virulent tubercle
bacilli. The variance covariance matrix of the MLEs under the NP distribution is computed as




11.4618 3.3416 0.3748
3.3416 1.8285 0.0900
0.3748 0.0900 0.0018


 .

Table 5 gives the MLEs of the parameters, -2log-likelihood, AIC, the K-S test statistic and the associated P-value for the third
data set. The fitted densities functions of NP, N and SN models is displayed in Figure 7. The results for this data set show that the
NP distributions yield the best fit among the N and SN distributions. Also the plots of the densities in Figure 6 confirmed this
conclusion.

8 Concluding remarks

In this paper based on compounding approach, a new three-parameter normal-Poisson was developed. The proposed NP is an
alternative to the Azzalini skew-normal distribution for fitting skewed data. We obtain expressions for the moments. The estimation
of the unknown parameters of the proposed distribution is approached by the EM-algorithm. Finally, we fitted NP distribution to
three real data sets to show the potential of the new proposed distribution.
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Table 5 gives the MLEs of the parameters, -2log-likelihood, AIC, the K-S test statistic and the associated P-value for the third
data set. The fitted densities functions of NP, N and SN models is displayed in Figure 7. The results for this data set show that the
NP distributions yield the best fit among the N and SN distributions. Also the plots of the densities in Figure 6 confirmed this
conclusion.

8 Concluding remarks

In this paper based on compounding approach, a new three-parameter normal-Poisson was developed. The proposed NP is an
alternative to the Azzalini skew-normal distribution for fitting skewed data. We obtain expressions for the moments. The estimation
of the unknown parameters of the proposed distribution is approached by the EM-algorithm. Finally, we fitted NP distribution to
three real data sets to show the potential of the new proposed distribution.
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Table 5: MLEs, −2LogL, K-S, P-value and AIC for guinea pigs data.

Dist MLE -2 Log L K-S P-value AIC
NP µ̂ = 256.3517, σ̂ = 110.7858,θ̂ = 3.1438 431.9072 0.09718 0.5062 869.8144
N µ̂ = 176.8334, σ̂ = 102.7445 435.6852 0.1299 0.1762 875.3704

SN µ̂ = 174.9396, σ̂ = 102.7617,α̂ = 0.0232 435.6852 0.9478 0 877.3703
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Figure 7: Plots of fitted NP, N and SN for air conditioning system data.
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