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ABSTRACT

The domains of certain types, such as Reinhardt and
Hartogs, are used in different problems of theory of functions of
several complex variables. For instance, any power series of several
complex variables converges in the complete logarithmically convex
Reinhardt domain. Transformations of Reinhardt and Hartogs allow
us to diminish the dimension of space and to consider some type of
domains using its images. This allows the visibility of the geometric
representation and the simplification of the study of properties of
such domains. In this article we consider some properties of
Reinhardt and Hartogs domains and transformations. The properties
of domain conservation under Reinhardt transformation and
convexity conservation under Reinhardt and Hartogs transformation
are proved.
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RESUMO

Os domínios de certos tipos, tais como os de Reinhardt
e Hartogs, são usados em diferentes problemas de teoria de funções
de várias variáveis complexas. Por exemplo, qualquer série de
potências de várias variáveis complexas converge num domínio
completo logaritmicamente convexo de Reinhardt. Transformações
de Reinhardt e Hartogs permitem diminuir a dimensão do espaço e
considerar alguns tipos de domínios utilizando sua imagem. Isto
possibilita visualizar a representação geométrica e simplificar o
estudo de propriedades desses domínios. Neste artigo
consideremos algumas propriedades de domínios e transformações
de Reinhardt e de Hartogs. Demonstraremos a propriedade de
conservação do domínio sob transformação de Reinhardt e a de
conservação de convexidade sob transformações de Reinhardt e de
Hartogs.

Keywords: several complex variables, Reinhardt domain, Hartogs
domain, convexity

1. INTROOUCTION. COMPLEX SPACE C" ANO SOME SIMPLE
OOMAINS

Reinhardt and Hartogs domains were introduced at the
beginning of the 20th century in order to solve some problems arisen
in the theory of functions of several complex variables, in particular,
to find the domain of convergence of the power and Hartogs series
[4]. As it is well known, the domain of convergence of the power
series is a complete Reinhardt domain [2,4].

Convexity and connected concept of pseudoconvexity
are important properties for characterization of domains of
convergence. For example, not every complete Reinhardt domain is
the precise domain of convergence of some power series in the case
of the several complex variables. The holomorphic convexity,
introduced by Cartan and Thullen, serves for global characterization
of domains of holomorphy and has a central place in the modern
theory of several complex variables [2,4]. Therefore, an investigation
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of the convexity properties of Reinhardt and Hartogs domains is
important problem. In this paper we apply Reinhardt and Hartogs
transformations [4,6) to simplify this investigation and to provide
geometric representation of these domains.

Let us introduce some basic definitions.
The complex /I -dimensional space C" is the set of

complex-valued vectors (points) with /I components

: = (::1' ::2 ..... ::,,) = {::~1:=1 .
Since ::k = Xk + iYk = Xk + iX"+k' the points of c" are the points of

real 2/1 -dimensional space R2". In the space C" the vector
space structure over the complex field C can be introduced, that is,
the rules for vector addition and multiplication by complex numbers
can be defined as follows [1]:

z + 11' = (<'1 + H'I':2 + H'2 , ... .z.; + H',,) , Vz, WE C"

ÀZ=(ÀZI,ÀZ2, ... ,À::,,), VZEC", VÀEC
The Euclidean norm is introduced by formula [1,3)

') 11 ?

1<.1- = I,lzk 1- (1)
k=1

The Euclidean norm 1<.1 coincides with norm of vector z in the space

R2
" . Also, polydisc norm can be introduced [3,6):

11::1I = sURI::k I (2)
k=l."

These two norms are connected by the following inequalities [3,6]:
11::11 ~ 1::1 s /lI 211::11 .

Let us consider some simpie domains in the space C"
(hereinafter domain is an open Connected set).

1. The disc with center a E C" and radius r is

B(a,r)={zEc":lz-al<r} (3)

This is Euclidean disc in the space R2
", its boundary is (2/1-1)-

dimensional circle
dB(a,r)={::E C" :Iz-al=r}
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2. Polydisc with center a E C" and radius r E R is

U(a,r)={zEc":llz-all<r} (4)
Polydisc is the disc with center a in polydisc metric and it represents
the Cartesian product of fi plane discs with centers ak and radius
r . There exists generalized polydisc with center
a = (ai' a2 , ... , a,,)E C" and vector radius r = (ri' r2 , ... , r,,)E R" :

U(a,r)={ZEC" :IZk-akl<rk,k=I, ... ,II} (5)

3. A Reinhardt domain with center a E C" satisfies the

following property: if point ZO = {z~}~~Ibelongs to this domain then

ali points in the form

z={ak+(z~-aJexp(iek)L'~I,O:::;ek <27[, belong to this
domain, too [3,6].

A Reinhardt domain with center a E C" is called
complete if together with any point ZO it contains ali points

Z = {Zk Y:~I which satisfy inequality: IZk - ak I :s; Iz2 - ak 1 '

Vk = I, ... , 11. Otherwise, Reinhardt domain is incomplete [3,6).
Obviously, disc and polydisc are complete Reinhardt

domains. If n = I then complete Reinhardt domains are discs
{Iz - ai < R} and incomplete Reinhardt domains are circular rings

{r<lz-al<R}.
Without loss of generality we can consider the

Reinhardt domains with center in the origin (a = O). In this case, if a

point Z = {Zk YLI belongs to a such domain, then the same happen to

ali points with the same modulus of components IZk I, k = I, ... , li and

any argument.
Let us consider Reinhardt transformation (6)

Z ~ a(z) = (lzll,lz21,···,lz,,1 )= {IZk I} ~=I (6)

from complex 11 -dimensional space C" into real 11 -dimensional

space R", more precisely onto R~ = R+ X.x R+ ' where
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R+ = [0;+00). This Reinhardt transformation a:C" ~ R~ maps a

Reinhardt domain D into set of points D+ c R~ which is called the
Reinhardt image (ar diagram) of the domain D. If D is a complete
Reinhardt domain then the set D+ contains together with any point

{Iz.~I} ~=I ali rectangular parallelepiped {h 1s Iz~I,'v'k = I, ... , fi}.
This diagram characterizes completely the Reinhardt domains and
makes possible their geometric representations in the cases fi = 2
and n = 3.

4. A Hartogs domain with symmetry plane z" = a"
satisfies the following property: if a point Z o = {z~} ~=I belongs to

this domain then ali points of the form
:::= (:::~.?~ ,... , ?~_I ,0" + (:::~- 0" )exp(i8" )), Os 8" < 2n belong to this
domain too [6].

A Hartogs domain is called complete if for each
element ZO it contains ali points z = {:::k 1;=1 which satisfy the

constraints: Zk = z~, k = I, ... , /I - 1, Iz" - o" 1 s Iz~- o" I [6]. Obviously,

the set of Hartogs domains is wider than the set of Reinhardt
domains.

Let us consider the Hartogs domains with symmetry
plane :::" = O and introduce the Hartogs transformation

f3:C" ~ C,,-I x R+ by formula [6]

(7)

We denote by 'z = (ZI ,... , Z,,_I) the projection of the point z E C" into

space C,,-I and by 'D the projection of the domain D into space
C,,-I (that is, the set of ali projections 'z of the points z E D ). The
image of a complete Hartogs domain contains together with any point

CzO,lz~l) the entire segment HzO,lz"I):lz"lslz~l}. Hartogs

diagram reduces dimension in 1 and makes possible geometric
representation of Hartogs domains if /I = 2 .

Ciência & Natura, Santa Maria, 24: 7 - 20 , 2002. 11



2.CONSERVATION OF DOMAIN UNDER REINHARDT
TRANSFORMATION

Theorem 1. Reinhardt transformation (6) maps any
domain D c CI/ , which does not intersect a set

E = {z, . Z2 '.. : ZI/ = O}, onto a domain of the space R" .
Proof. Let us denote by G the image of a domain D

under Reinhardt transformation (6): G = a(D), where

a(z)= {IZk I}~=,= {a k } t , .
1) First, we prove that set G is open, that is, ali of its

points are interior points. Let aO= (af,ag, ...,a?,) be an arbitrary point
of set G. Because G is image of domain D under transformation

a(z), then there exists ZO E D, ZO = (z~ ,..., z~ ) such that

a(zo )= aO. Then,

aO = (a7,a~ ,...,a~)= (lz~I,lz~I,...,lz~I).
Since the domain D does not intersect the set

E={Z"Z2"':Z,,=O}, then Iz?l:;to,'v'k=I, ... ,II. Hence, we can

rewrite the point ZO E D in the form

ZO = (z~ ,... ,z~)= (1z.~lex~ iq>~ Á ... ~z.~1exp( iq>~ )). Since D is a

domain, there exists a radius r> O such that the disc with center ZO

and radius r is contained in D: B(zO,r)={lz-zOI<r}cD. We

now consider the disc B(a 0, r) = {Ia- a °I < r} in the set R~. If

we choose any point fi= (fi, ,....ã; )E s(aO, r) and consider the point

Z = (a, exp( iq>,o } ... , a" exp( iq>,~ ))E C" , then fi= a(z) and the

Euclidean distance between points z and z° can be evaluated as
follows:

Iz-li=(~llzklex~ iqf)-lz~lex~iqf)l"r =(~(IZkl-lz~I)"r =Ifi-d'l < r

Therefore, Z E S(ZO, r)c D (in particular, it follows from here that
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l:-kl=ã(to.Vk=I, ... ,n) and, consequently, ã=a(:-)EG. Thus,

B(aO,r)c G , that is, aO is an interior point of set G. Since aO is an
arbitrary point of set G , then set G is open.

2) To prove that G is connected set, we reler to well-
known result that the image of a connected set under a continuous
mapping is connnected [5]. Since a Reinhardt transformation (6) is a
continuous mapping 01 a metric space C" into a metric space R",
G = a(D) is a connected set.

Thus, G is open and connected, that is, G is a
domain.

Observation. Condition D í\ E = 0. E = {ZI . Z2 '.. : ZII = O}
is important. In fact, the image G of the bidisc Izl < I

( z = (:::I,:::2)EC2) under the transformation a(z) is not a domain

because it contains the parts TI ={O~IZII=al<I,lz21=a2 =o} and

T2 ={I:::II=al=o,o~lz21=a2 <I} of its boundary (this is shown in

Fig.1).

Fig. 1. Image01 bidisc 1<.1< I underReinhardttranslormation.The parts TI

and T2 01 boundarybelongto image.
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3. CONVEXITY OF HARTOGS DOMAIN
Theorem 2. A complete Hartogs domain D c c" is

convex if, and only if, its image [3(D) under Hartogs transformation

(7) is a convex set in the space R211
-

1
•

Proof. First, we prove the necessary condition. Let D
be a complete and convex Hartogs domain. We must prove that its
image G = [3(D) under Hartogs transformation (7) is a convex set in

h R211-1 L [31 foi [31 [31) d [32 ([31 [32 [31) bt espace . et = \P I' 1"'" li an = I' 1,"" li e

two arbitrary points of the set G . The points [3 I and [3 2 are images

of some points zl(tp)=(zl, ... ,z~J=(zll, ... ,z~'_I,lz~,lexp(itp)) and

Z 2 ('I')= (Z12,... , Z,~ )= (Z12,... , Z'~_I' Iz,~lexp( i'l')) under Hartogs

transformation, that is f3l=(f3:, ,f3:'_i'f3,:)=(ZII, ... ,Z,I'_I,lz,I,j)

and 13 2= (13 ~,... , 13 ~-i' 13 ~ ) = (Z12, , Z'~_I,Iz,~ I ). The line segment

joining the points f31 and f3 2 in the space R211
-

1 has the following
representation:() jx/(r)=(I-r)x; +rx;,y/(r)=(I-r)y; +rr;,V" = 1,11-1,)
f3r= I, ,0S:;rS:;l'

lz"(r)I=(I-r)lz,,l+rlz,,1
where Zk = xk + iYk> Vk = I,...,li-I . Since D is a Hartogs domain,

ZI(tp)ED and z2(lIf)ED, Vtp,lIfE[0;2n], in particular, ZI(O)ED
and Z2 (O)E D. Due to the convexity of D, the line segment I(r)
connecting z I (O) and z 2 (O) is contained in D:
l(t) = z(t) ={ Zk(t) =(I-t )z~+tz;, Vk = I, ... , n-I, z,,(t) =(I-t) IZ,I,I +t I z,~1}
, z(r)E D, Vr E [0;1].

The points ZI(O) and Z2(0) are in R211-1 and ZI(O)=f3I,
z2 (O) = f3 2. By construction, the line segment I(r) coincides with
[3(r). From l(r)E D,VrE [0;1], it follows that

[3(r )= f3(t(r ))E G,VrE [0;1], that is, the line segment [3(r ) lies entirely
in G . Therefore G is a convex set.

14 Ciência & Natura, Santa Maria, 24: 7 - 20 , 2002.



Now we prove the sufficient condition. Let D be a
complete Hartogs domain and its image C = f3(D) under Hartogs
transformation be a convex set. We show that D is convexo Let
~I = (~!,...,<:;,) and Zl = h1,..., <:,~) be two arbitrary points of the

domain D. The line segment

IV)= ~(r)= {<:k (r )Y:=I = {(I-r )~~ +r~i tl'O s r s I
joins these points. Transformation f3(z) maps z I, ~ 2 and I(r) onto

points f31= f3k)= (~II,..., ::;'_1 ,lz:,I), f31= f3(Zl ~ (~~...., ~~_I,I::,~I) and

curve

íl(r)= f3(/(r ))= {::" (r)= (I-r )~1+rz1 ,Vk = 1,···I/-I.I~"(r1=1(1 -r )::;, +tz~l}
respectively. We can construct a line segment X (r) connecting the

point f3 I and f3 1:

X(t) = {Zk (t) = (I-t )z! +tz; ,Vk = I,...,!l-I, Iz" (t~ = (l-t )IZ,I,I+~z,~I}
Since the points f31 and f3 2 belong to the set C, it follows from its

convexity that C contains the entire line segment X(r). Because

Iz, (t) I = 1 (1 - t )z:, + tz,~ 1 ~ (1 - t) 1 z:, 1 + tlz,~ 1 = Iz" (t ~
and D is a complete Hartogs domain, then ali points of the curve
íl(t) belong to the set C . Therefore the preimage of the curve íl(t) ,
that is, the line segment I(t) is contained in domain D. This signifies
that D is a convex domain.

4. CONVEXITV OF REINHARDT DOMAIN
Theorem 3. A complete Reinhardt domain D c C" is

convex in C" if, and only if, its image C = a(D) under Reinhardt

transformation (6) is a convex set in R" .
Proof. First, we show the necessary condition. Let D

be a complete convex Reinhardt domain in C" and C = a(D) be the
image of the domain D under Reinhardt transformation
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Z -HX(Z)= ~zd, ... ,lz"I). The line segment 1(1) joining two arbitrary
. 1 (li) 2 (2 2)points a =\al, ...,a" and a =\al, ...,a" ofset G hastheform

l(t) = a(t) = {(1- t P ~+ ta ~} ~~I' OS; t s; I .

Since a I,a 2E G and G = a(D), there exists two points
I (I I) 2 (2 2) .Z = ZI ,..., z.; and z = ZI ,..., z" of the domain D such that

a 1= a(z I) a 2= a(z 2), that is,

a 1= (a: ,...,a :,)= (IZIII,..., Iz~,I) , a 2= (a ~,...,a ~)= (Iz~ I,..., IZI~I).
From the definition of Reinhardt domains, D contains the points that
can be expressed by

Z I (q> ) = Z I (q>: ,... , q>:,) = (Izi 1 exp &q>i } ... , Iz:,1 exp (iq>,',)),
0S;ep~<2n,Vk=I, ... ,1/

and

Z2 (q» = Z 2 (q> ~,... ,q> ~ )= (lz,21 exp (iq>12} ,Iz,~ 1 exp (iq>,~ )),
os; epi< 2n, Vk = 1, ,1/.

In particular, the points Z I (O) and z 2 (O) belong to D:

z ' (0)= (Izi 1, ... ,lz~,I)E D, Z2(0)= (lzn ...,IZI~I)E D. By noting that

Z 1 (O) = ai, Z2 (O) = a 2, we conclude that the line segment

l(t) =a(t) = {(1- t )a ~+ ta; } ~~I={(l- t ) Iz~ 1 + t Iz: I}~~I
joining the points ai and a 2 in Reinhardt diagram, at the same time

connects the points z I (O) and Z 2 (O) in domain D and this line

segment lies entirely in domain D due to its convexity. Therefore the
image a(L(t ))= IV) of the line segment 1(1) is contained in G, that is,
the set G is convexo

Now we show that Reinhardt diagram convexity implies
the convexity of its preimage. Let D be a complete Reinhardt
domain and C = a(D) be a convex set, where a(z) is the Reinhardt
transformation. The line segment 1(1) joining two arbitrary points

ZI = (Zll,..., z~,) and Z2 = (z~ ,..., Zl~)' ZI ,Z2 E D has the form:
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I(t)= z(t)= {(l- t)z~ + tzi L'~po~ t ~ 1.
Transformation a(:) maps ;: I, ;:2 and 1(') onto points

a 1=a{z')= {Iz!I}~~I'a 2=a(z2)= {Izil}~~,
and the curve

À(t)= a(t(t ))= {1(1-t )z~ + tzil}~~pO ~ t ~ 1,

respectively. The curve À(r) joins the points ai and a 2 because

À(o)=a(t(o))={lz!I}~~1and À(l)=a(l(l))={lz;IL~" Since

a I,a 2E G and G is convex, the line segment joining these two

points

x (t) = {(1- t) Iz~1+ tlzi I}~~I'O~ t s 1
is entirely contained in G. Obviously, the following inequalities hold
for ali k = 1, ... ,11

I(J-t)~~ +tzil~(J-t)lz~l+tlzil
IZ11

(8)

3

Fig. 2. Convex set representing Reinhardt diagram of domain defined by

inequalities I < /:11 +h 1<~.
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Since Reinhardt domain D is complete, it follows from the condition
X(r)E G,VtE [0;1] and inequalities (8) that Â(r)cG,VrE [0;1]. Hence,
l(r) c D , that is, D is convexo

Observation. A completeness of the domain D is
important for convexity of both Reinhardt and Hartogs domains. In
fact, the twice inequality 1< IZII+ I~ll <:3 defines a Reinhardt domain

D in the space C1
. The Reinhardt diagram G = a(D) of domain D

is a convex set in the plane R2 (see Fig.2).
Let us consider the point a= (I; 1/2)E G. Since D is a

Reinhardt domain, then ali the points z(ep) = (exp (iep}, 1/2), O~ ep < 2n
belong to D. We choose the points z' = ;:(0)= (I;1/2)E D and

Z2 = z(n)= (-I; 1/2)E D and join these ones with the line segment

l(r )=[ (I -r).1 +r· (-I),(I-t ).~+r.~ J=[1-2r;~ ) o s r ~ I.

The image of this line segment under Reinhardt transformation is a
set of points in the form

a(l(r ))= [11- 2rl,~ )0 ~r ~ I.
If t = 1/2, then the respective point a(t(1/2)) = (o; 1/2) does not
belong to G and, therefore, the correspondent point 1(0) does not
belong to D. It means that the line segment l(r) is not entirely
contained in domain D, that is, D is not convexo
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