Propagação de sinais em condutores segundo a Eletrodinâmica de Weber

Júlio Akashi Hernandes André Kock Torres Assis

RESUMO

Neste artigo calculamos a equação da telegrafia através da teoria eletrodinâmica de Weber. Isto é feito para condutores de diversos formatos. Comparamos os resultados obtidos com os preditos pelo eletromagnetismo clássico.

Palavras-chave: Eletrodinâmica de Weber, equação da telegrafia, teoria de circuitos.

ABSTRACT

In this work, we derive the telegraphy equation from Weber's electrodynamics. This is done for conductors of different geometries. We compare our results with the ones predicted by the classical electromagnetism.

PACS: 72.15.-v (Electronic conduction in metals and alloys)

1. INTRODUÇÃO

A equação da telegrafia, levando em conta a capacitância, auto-indutância e resistência de um condutor, foi obtida pela primeira vez por Weber e Kirchhoff em 1857, [JM86, volume 1, págs. 144-146 e 296-297]. Foram trabalhos independentes mas ambos utilizaram a eletrodinâmica de Weber. Foi apenas em 1876 que Heaviside obteve a mesma equação a partir das equações de Maxwell, [Whi73, pág. 229]. Weber e Kirchhoff obtiveram a equação para o caso de condutores com seção reta circular. O caso de cabos coaxiais foi tratado pela primeira vez em [Ass00]. Neste trabalho apresentamos os aspectos essenciais destes casos e depois tratamos dos casos de propagação de sinais em fitas condutoras e em linhas de transmissão compostas de duas longas fitas condutoras de frente uma para a outra. Sempre partimos da força de Weber, dada por:

$$\vec{F}_{21}^{W} = \frac{q_1 q_2}{4\pi \varepsilon_0} \frac{\hat{r}_{12}}{r_{12}^2} \left\{ 1 + \frac{1}{c^2} \left[\vec{v}_{12} \cdot \vec{v}_{12} - \frac{3}{2} (\hat{r}_{12} \cdot \vec{v}_{12})^2 + \vec{r}_{12} \cdot \vec{a}_{12} \right] \right\}, \tag{1}$$

onde ε_0 é a permissividade elétrica do vácuo, μ_0 é a permeabilidade magnética do vácuo, e $c=1/\sqrt{\varepsilon_0\mu_0}$. Esta é a força exercida pela carga q_2 localizada em \vec{r}_2 , movendo-se com velocidade \vec{v}_2 e aceleração \vec{a}_2 em relação a um sistema de referência S, atuando sobre a carga q_1 , em \vec{r}_1 com velocidade \vec{v}_1 e aceleração \vec{a}_1 . Na expressão acima foram usadas as grandezas relativas $\vec{r}_{12}=\vec{r}_1-\vec{r}_2$, $\vec{v}_{12}=\vec{v}_1-\vec{v}_2$ e $\vec{a}_{12}=\vec{a}_1-\vec{a}_2$.

2. EQUAÇÃO CLÁSSICA DA TELEGRAFIA

A equação da telegrafia, na forma clássica, que envolve a resistência (R), a auto-indutância (L) e a capacitância (C) do sistema, pode ser escrita na forma ([LLP84, pág. 318], [Whi73, pág. 229]):

$$\frac{\partial^2 J}{\partial z^2} - \frac{LC}{\ell^2} \frac{\partial^2 J}{\partial t^2} = \frac{RC}{\ell^2} \frac{\partial J}{\partial t},\tag{2}$$

onde ℓ é o comprimento do condutor na direção de propagação, J=J(z,t) é a densidade volumétrica de corrente e z é o eixo de propagação do sinal eletromagnético. Neste artigo usamos a notação do sistema internacional de unidades.

3. PROPAGAÇÃO DE SINAIS NUM CILINDRO CONDUTOR OCO .

Suponha uma casca cilíndrica condutora, com seção reta circular de raio a, e comprimento longitudinal ℓ , tal que:

$$\ell \gg a$$
. (3)

Suponha que existe nela uma densidade superficial de corrente $K(z,t)\hat{z}$ e uma densidade superficial de carga $\sigma_f(z,t)$, onde z é o eixo longitudinal do cilindro.

Em [BA98, eq. (2.13)], temos a auto-indutância de um cilindro com corrente axial:

$$L = \frac{\mu_0 \ell}{2\pi} \ln \frac{\ell}{a}.$$
 (4)

Em [Ass00, eq. (19)] temos a capacitância do cilindro

$$C = \frac{2\pi\varepsilon_0 \ell}{\ln\left(\ell/a\right)}. (5)$$

Podemos verificar que L e C satisfazem a relação [Jac75, pág. 362]:

oco:

$$\frac{LC}{\ell^2} = \frac{1}{c^2}. (6)$$

Substituindo L e C na eq.(2), obtemos:

$$\frac{\partial^2 J}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 J}{\partial t^2} = \frac{2\pi \varepsilon_0 R}{\ell \ln(\ell/a)} \frac{\partial J}{\partial t}.$$
 (7)

Vamos ver agora como esta equação é obtida com a eletrodinâmica de Weber.

3.1. Potenciais e forças

O potencial gerado pelas cargas superficiais $\sigma_f(z,t)$ no ponto de observação (r,φ,z) , em coordenadas cilíndricas, será dado por (lembrando que não deve haver dependência do ângulo poloidal φ , pela simetria do sistema):

$$\phi(r,z,t) = \frac{a}{4\pi\varepsilon_0} \int_0^{2\pi} d\varphi' \int_{-\ell/2}^{\ell/2} \frac{\sigma_f(z',t)dz'}{\sqrt{r^2 + a^2 - 2ra\cos\phi' + (z-z')^2}}$$

$$= \frac{a\sigma_f(z,t)}{4\pi\varepsilon_0} I = \begin{cases} \frac{a}{\varepsilon_0} \sigma_f(z,t) \ln\frac{\ell}{a}, & r < a, \\ \frac{a}{\varepsilon_0} \sigma_f(z,t) \ln\frac{\ell}{r}, & r > a. \end{cases}$$
(8)

Na segunda passagem acima, seguimos procedimento de aproximação utilizado por Kirchhoff [Kir57]. A idéia principal denominador integral acima, é que, na $u = \sqrt{r^2 + a^2 - 2ra\cos\phi' + (z - z')^2}$ se torna da ordem de ℓ para z' muito longe de z (ou seja, |z-z'| >> a). Já para $z' \approx z$ o denominador é da ordem de a. Como estamos supondo $\ell >> a$ vem que o integrando é muito pequeno, exceto para z'=z. Isto permite remover $\sigma_t(z',t)$ do integrando, tomando seu valor em z'=z. Apresentamos o cálculo da integral I no apêndice A.

A componente longitudinal da força elétrica devida a este potencial, agindo sobre uma carga-teste $q_{\rm I}$, é dada por:

$$F_{z}^{\phi}(r,z,t) = -q_{1} \frac{\partial \phi}{\partial z} = \begin{cases} -\frac{q_{1}a}{\varepsilon_{0}} \ln \frac{\ell}{a} \frac{\partial \sigma_{f}}{\partial z}, & r < a, \\ -\frac{q_{1}a}{\varepsilon_{0}} \ln \frac{\ell}{r} \frac{\partial \sigma_{f}}{\partial z}, & r > a. \end{cases}$$
(9)

A componente longitudinal da força de Weber, que envolve a aceleração $\vec{a}_c(z,t)$ da densidade superficial de carga de condução σ_c agindo sobre uma carga-teste $q_{\rm I}$, é dada pela expressão:

$$F_{z}^{W}(r,z,t) = -\frac{aq_{1}\mu_{0}}{4\pi} \int_{0}^{2\pi} d\varphi' \int_{-\ell/2}^{\ell/2} \sigma_{c} \frac{\hat{r}_{1c} \cdot z}{r_{1c}^{2}} \hat{r}_{1c} \cdot \vec{a}_{c}(z',t) dz'$$

$$= -\frac{aq_{1}\mu_{0}\sigma_{c}a_{c}(z,t)}{4\pi} I' = \begin{cases} -aq_{1}\mu_{0}\sigma_{c}a_{c}(z,t)\ln(\ell/a), & r < a, \\ -aq_{1}\mu_{0}\sigma_{c}a_{c}(z,t)\ln(\ell/r), & r > a, \end{cases}$$
(10)

onde $\vec{r}_{\rm lc}$ é o vetor que aponta da posição da carga-teste $q_{\rm l}$ até a posição de integração na carga de condução $dq_{\rm c}$ e, novamente, na última passagem, utilizamos a aproximação de Kirchhoff. Apresentamos o cálculo da integral I' no apêndice A.

O potencial vetor de Weber é dado por:

$$\vec{A}_{W}(r,z,t) = \frac{\mu_{0}a}{4\pi} \int_{0}^{2\pi} d\varphi' \int_{-\ell/2}^{\ell/2} \frac{\vec{K}(z',t) \cdot (\vec{r} - \vec{r}') dz' (\vec{r} - \vec{r}')}{\left[r^{2} + a^{2} - 2ra\cos\phi' + (z - z')^{2}\right]^{3/2}}$$

$$= \begin{cases} \mu_{0} aK(z,t) \ln(\ell/a) \hat{z}, & r < a, \\ \mu_{0} aK(z,t) \ln(\ell/r) \hat{z}, & r > a, \end{cases} \tag{11}$$

onde $K = \sigma_c \vec{v}_c = \sigma_c v_c \hat{z}$, e podemos verificar que:

$$F_z^W = -q_1 \frac{\partial \vec{A}_W}{\partial t} \cdot \hat{z}. \tag{12}$$

3.2. Equação da telegrafia

Suponha que a carga-teste q_1 considerada nas seções anteriores seja um elétron de condução: $q_1 = -e = -1.6 \times 10^{-10} \, kg$. Podemos aplicar a segunda lei de Newton neste elétron, onde as forças que estão agindo são a eletrostática (9), eletrodinâmica (10) e resistiva. Esta última é do tipo $-bv_c$, onde b é a constante de amortecimento com a forma $b = q_1 2\pi aR\sigma_c/\ell$, e R é a resistência da casca cilíndrica. Obtemos a seguinte equação:

$$\frac{ea}{\varepsilon_0} \frac{\partial \sigma_f}{\partial z} \ln \frac{\ell}{a} + ea\mu_0 \frac{\partial K}{\partial t} \ln \frac{\ell}{a} + \frac{2\pi eaR}{\ell} K = m_e a_c, \tag{13}$$

onde m_e é a massa inercial do elétron. Podemos desprezar o lado direito da equação anterior comparado com o segundo termo do lado

esquerdo, pois usualmente temos $|ea\mu_0\sigma_c\ln(\ell/a)|>>m_e$. Por exemplo, para um metro de fio de cobre com 1 milímetro de diâmetro, com $\sigma_c=-1C/m^2$, vem: $|ea\mu_0\sigma_c\ln(\ell/a)|\approx 8\times 10^{-28}kg$, que é muito maior que a massa do elétron $m_e=9\times 10^{-31}kg$. Utilizando a equação da conservação de carga, na forma:

$$\frac{\partial K}{\partial z} = -\frac{\partial \sigma_f}{\partial t},\tag{14}$$

na eq.(13), chega-se à eq.(7), fazendo $J \to \sigma_f$. Note que as grandezas $\phi(r,z,t)$, K(z,t) e $A_z(r,z,t)$ obedecem à mesma eq.(7).

4. PROPAGAÇÃO DE SINAIS NO FIO CONDUTOR MACIÇO

Suponha agora a existência de um fio maciço reto de comprimento ℓ e seção reta circular de raio a, tal que $\ell >> a$. O fio conduz uma corrente i(z,t), uniforme em sua seção reta, e com uma distribuição de carga superficial $\sigma_f(z,t)$, onde z é o eixo longitudinal.

4.1. Cálculo da auto-indutância

A fórmula de auto-indutância entre elementos superficiais e volumétricos pode ser dada por, respectivamente [BA98, eq.(2.1)]:

$$d^{4}M_{ij} = \frac{\mu_{0}}{4\pi} \frac{1}{\omega_{i}\omega_{j}} \left[\frac{1+k}{2} \frac{\hat{\ell}_{i} \cdot \hat{\ell}_{j}}{r_{ij}} + \frac{1-k}{2} \frac{\left(\hat{r}_{ij} \cdot \hat{\ell}_{i}\right) \left(\hat{r}_{ij} \cdot \hat{\ell}_{j}\right)}{r_{ij}} \right] da_{i}da_{j}, \quad 15)$$

$$d^{6}M_{ij} = \frac{\mu_{0}}{4\pi} \frac{1}{A_{i}A_{j}} \left[\frac{1+k}{2} \frac{\ell_{i} \cdot \ell_{j}}{r_{ij}} + \frac{1-k}{2} \frac{\left(\ell_{ij} \cdot \ell_{i}\right)\left(\ell_{ij} \cdot \ell_{j}\right)}{r_{ij}} \right] dV_{i} dV_{j}, \tag{16}$$

onde ω_i e ω_j são as larguras por onde passam as correntes superficiais $K=I/\omega$, A_i e A_j são as áreas por onde passam as correntes volumétricas J=I/A, ℓ_i e ℓ_j são as direções dos elementos de corrente ($\bar{K}=K\hat{\ell}$ e $\bar{J}=\hat{J}\hat{\ell}$), $r_{ij}=r_i-r_j$ é a diferença vetorial das posições dos elementos interagentes, da_i e da_j são os elementos diferenciais de área, e dV_i e dV_j são os elementos

diferenciais de volume. A constante k é um número da ordem da unidade cujo valor depende da fórmula que estivermos usando [BA98, seção 1.7]: para k=1 vem a expressão de Neumann, k=-1a de Weber, k = 0 a de Maxwell e k = -5 a de Graneau.

No caso da auto-indutância do fio maciço, usamos a forma dada pela eq.(16), com:

$$A_{i} = A_{j} = \pi a^{2}, \quad \hat{\ell}_{i} = \hat{\ell}_{j} = \hat{z}, \qquad dV = rdrd\varphi dz,$$

$$\vec{r}_{ij} = (r_{i}\cos\varphi_{i} - r_{j}\cos\varphi_{j})\hat{x} + (r_{i}\sin\varphi_{i} - r_{j}\sin\varphi_{j})\hat{y} + (z_{i} - z_{j})\hat{z},$$

$$\hat{\ell}_{i} \cdot \hat{\ell}_{j} = 1, \qquad (\hat{r}_{ij} \cdot \hat{\ell}_{i})(\hat{r}_{ij} \cdot \hat{\ell}_{j}) = \frac{(z_{i} - z_{j})^{2}}{r_{ij}^{2}}.$$

$$(17)$$

Com isto podemos calcular as integrais J_1 e J_2 , cujos valores são apresentados no apêndice B. O resultado final é independente de k:

$$L = \frac{\mu_0 \ell}{2\pi} \left(\ln \frac{2\ell}{a} + \frac{1}{2} \right) \approx \frac{\mu_0 \ell}{2\pi} \ln \frac{\ell}{a}, \tag{18}$$

A capacitância do fio macico é a mesma de um fio oco. eq.(5), e a equação da telegrafia, usando a eq.(2), resulta idêntica à eq.(7).

4.2. Potenciais e forças

Analogamente ao que foi feito no caso do fio oco. podemos encontrar para este caso do fio cilíndrico maciço o potencial ϕ devido às cargas superficiais, a força elétrica F_{*}^{ϕ} devida ao potencial ϕ , a componente longitudinal da força de Weber F^w que envolve a aceleração dos elétrons de condução agindo sobre a carga-teste q_1 , e o potencial vetor magnético A_W . Resolvendo as integrais para este caso obtêm-se, respectivamente:

$$\phi(r,z,t) = \begin{cases} \frac{a}{\varepsilon_0} \sigma_f(z,t) \ln \frac{\ell}{a}, & r < a, \\ \frac{a}{\varepsilon_0} \sigma_f(z,t) \ln \frac{\ell}{r}, & r > a, \end{cases}$$
(19)

$$F_{z}^{\phi}(r,z,t) = \begin{cases} -\frac{q_{1}a}{\varepsilon_{0}} \frac{\partial \sigma_{f}}{\partial z} \ln \frac{\ell}{a}, & r < a, \\ -\frac{q_{1}a}{\varepsilon_{0}} \frac{\partial \sigma_{f}}{\partial z} \ln \frac{\ell}{r}, & r > a, \end{cases}$$
(20)

$$F_{z}^{W}(r,z,t) = \begin{cases} -\frac{q_{1}\mu_{0}a^{2}}{2}\rho_{c}a_{c}(z,t)\left(\ln\frac{\ell}{a} - \frac{1 + r^{2}/a^{2}}{2}\right) & r < a, \\ -\frac{q_{1}\mu_{0}a^{2}}{2}\rho_{c}a_{c}(z,t)\left(\ln\frac{\ell}{r} - 1\right) & r > a, \end{cases}$$
(21)

$$\vec{A}_{W}(r,z,t) = \begin{cases} \frac{\mu_{0}a^{2}}{2}J(z,t)\left(\ln\frac{\ell}{a} - \frac{1 + r^{2}/a^{2}}{2}\right)\hat{z}, & r < a, \\ \frac{\mu_{0}a^{2}}{2}J(z,t)\left(\ln\frac{\ell}{r} - 1\right)\hat{z}, & r > a, \end{cases}$$
(22)

onde ρ_c é a densidade volumétrica das cargas de condução no fio, e $a_c(z,t)\hat{z}$ é a aceleração das cargas de condução.

Supondo que a carga-teste seja um dos elétrons de condução ($q_1=-e$), aplicamos nele a segunda lei de Newton, com uma força de resistência dada por $-bv_c$, com $b=q_1\pi~a^2R\rho_c/\ell$. Desprezando o termo que envolve a massa do elétron e usando a equação da continuidade na forma:

$$\frac{\partial i}{\partial z} = -2\pi \ a \frac{\partial \sigma_f}{\partial t},\tag{23}$$

obtemos a equação da telegrafia usando a eq.(3):

$$\frac{\partial^2 \sigma_f}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \sigma_f}{\partial t^2} = \frac{2\pi \varepsilon_0 R}{\ell \ln(\ell/a)} \frac{\partial \sigma_f}{\partial t}.$$
 (24)

5. PROPAGAÇÃO DE SINAIS NO CABO COAXIAL

Agora vamos supor a existência de um cabo coaxial, composto de duas cascas cilíndricas de raio interno a e externo b, e comprimento ℓ , tal que valem as aproximações:

$$\ell \gg b > a$$
, e $\ell \gg r, z$. (25)

Vamos assumir que o condutor externo tenha resistência nula. Neste cabo existem densidades superficiais de corrente $(K_a(z,t) \in K_b(z,t))$ e de carga $(\sigma_f^a(z,t) \in \sigma_f^b(z,t))$ nos condutores interno e externo. Um sinal eletromagnético caminha pelas cascas cilíndricas na mesma direção longitudinal z, sob as condições:

$$2\pi a \sigma_f^a(z,t) = -2\pi b \sigma_f^b(z,t), \tag{26}$$

$$I_a(z,t) = -I_b(z,t),$$
 ou $2\pi a K_a(z,t) = -2\pi b K_b(z,t).$ (27)

Em [BA98, eq.(2.18)], temos a auto-indutância de um cabo coaxial:

$$L = \frac{\mu_0 \ell}{2\pi} \ln \frac{b}{a}.$$
 (28)

A capacitância de um cabo coaxial é dada por:

$$C = \frac{2\pi\varepsilon_0 \ell}{\ln(b/a)}. (29)$$

Novamente, temos que L e C satisfazem à relação à (6) . Substituindo na equação da telegrafia (2), temos:

$$\frac{\partial^2 J}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 J}{\partial t^2} = \frac{2\pi \varepsilon_0 R_a}{\ell \ln(b/a)} \frac{\partial J}{\partial t},\tag{30}$$

onde R_a é a resistência do cabo interno (pois a resistência do condutor externo é nula).

Agora vamos obter esta equação com a eletrodinâmica de Weber.

5.1 Potenciais e forças

O potencial elétrico, a força elétrica, a componente longitudinal da força de Weber aplicada a uma carga-teste q_1 (levando em conta o potencial coulombiano e a componente da força de Weber que depende da aceleração), e o potencial vetor magnético são, respectivamente:

$$\phi(r,z,t) = \begin{cases} \frac{a}{\varepsilon_0} \sigma_f(z,t) \ln \frac{b}{a}, & r < a, \\ \frac{a}{\varepsilon_0} \sigma_f(z,t) \ln \frac{b}{r}, & a < r < b, \\ 0, & r > b, \end{cases}$$
(31)

$$F_{z}^{\phi}(r,z,t) = \begin{cases} -\frac{q_{1}a}{\varepsilon_{0}} \frac{\partial \sigma_{f}}{\partial z} \ln \frac{b}{a}, & r < a, \\ -\frac{q_{1}a}{\varepsilon_{0}} \frac{\partial \sigma_{f}}{\partial z} \ln \frac{b}{r}, & a < r < b, \\ 0, & r > b, \end{cases}$$
(32)

$$F_{z}^{W}(r,z,t) = \begin{cases} -q_{1}\mu_{0}a\frac{\partial K_{a}}{\partial t}\ln\frac{b}{a}, & r < a, \\ -q_{1}\mu_{0}a\frac{\partial K_{a}}{\partial t}\ln\frac{b}{r}, & a < r < b, \\ 0, & r > b, \end{cases}$$

$$(33)$$

$$\vec{A}_{W}(r,z,t) = \begin{cases} \mu_{0}aK_{a}\ln(b/a)\hat{z}, & r < a, \\ \mu_{0}aK_{a}\ln(b/r)\hat{z}, & a < r < b, \\ 0, & b > r. \end{cases}$$
(34)

Aplicando a segunda lei de Newton num elétron de condução ($q_1=-e$), impondo uma força resistiva $-bv_c$, onde a constante b é a mesma que na seção 4.2, e desprezando o termo que envolve a massa do elétron, obtemos(30), com $J \to \xi$, onde ξ representa qualquer uma das seguintes quantidades: $\sigma_f^a(z,t)$, $\sigma_f^b(z,t)$, $K_a(z,t)$, $K_b(z,t)$, $I_a(z,t)$, $I_b(z,t)$, $\phi(r,z,t)$ ou $A_{W,z}(r,z,t)$.

6.PROPAGAÇÃO DE SINAIS ELÉTRICOS NA PLACA RETANGULAR

Suponha a existência de uma placa condutora de dimensões ℓ_x e ℓ_z , respectivamente nos eixos x e z, onde z é o eixo de propagação do sinal elétrico. Utilizamos a aproximação:

$$\ell_z >> \ell_x >> x, y, z, \tag{35}$$

onde $\vec{r} = (x, y, z)$ é a posição de observação.

Vamos calcular a auto-indutância de uma placa, usando

(15):

$$\omega_{i} = \omega_{j} = \ell_{x}, \qquad \hat{\ell}_{i} = \hat{\ell}_{j} = \hat{z}, \qquad da = dxdz,$$

$$\vec{r}_{ij} = (x_{i} - x_{j})\hat{x} + (z_{i} - z_{j})\hat{z},$$

$$\hat{\ell}_{i} \cdot \hat{\ell}_{j} = 1, \qquad (\hat{r}_{ij} \cdot \hat{\ell}_{i})(\hat{r}_{ij} \cdot \hat{\ell}_{j}) = \frac{(z_{i} - z_{j})^{2}}{r_{ii}^{2}}.$$
(36)

Substituindo em (15), temos:

$$d^{4}L = \frac{\mu_{0}}{4\pi\ell_{x}^{2}} \left[\frac{1+k}{2} \frac{1}{r_{ij}} + \frac{1-k}{2} \frac{(z_{i}-z_{j})^{2}}{r_{ij}^{3}} \right] dx_{i} dx_{j} dz_{i} dz_{j},$$

$$L = \frac{\mu_{0}}{4\pi\ell_{x}^{2}} \left[\frac{1+k}{2} I_{1}(a=0) + \frac{1-k}{2} I_{2}(a=0) \right].$$
(37)

No apêndice C apresentamos a resolução das integrais I_1 e I_2 envolvidas na equação acima. O resultado é:

$$L = \frac{\mu_0}{2\pi} \ell_z \left(\ln \frac{2\ell_z}{\ell_x} + \frac{k}{2} \right) \approx \frac{\mu_0 \ell_z}{2\pi} \ln \frac{\ell_z}{\ell_x}.$$
 (38)

A capacitância do sistema, de acordo com (6), é:

$$C = \frac{2\pi\varepsilon_0 \ell_z}{\ln(\ell_z/\ell_x)},\tag{39}$$

e a equação da telegrafia, usando que R_{\cdot} é a resistência da placa, fica:

$$\frac{\partial^2 J}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 J}{\partial t^2} = \frac{2\pi \varepsilon_0 R}{\ell_z \ln(\ell_z/\ell_x)} \frac{\partial J}{\partial t}.$$
 (40)

6.1. Potenciais e forças

Supomos que a densidade superficial de carga σ_f não depende de x. O potencial elétrico devido às cargas superficiais é dado por:

$$\phi(x, y, z, t) = \frac{1}{4\pi\varepsilon_0} \int_{-\ell_x/2}^{\ell_x/2} dx' \int_{-\ell_z/2}^{\ell_z/2} \frac{dz' \sigma_f(z', t)}{\sqrt{(x - x')^2 + y^2 + (z - z')^2}}$$

$$= \frac{\sigma_f(z, t)}{4\pi\varepsilon_0} I_p = \frac{\sigma_f}{2\pi\varepsilon_0} \left[\ell_x \left(\ln \frac{\ell_z}{\ell_x} + \ln 2 + 1 \right) - \pi |y| \right], \tag{41}$$

onde utilizamos a aproximação de Kirchhoff para tirar $\sigma_f(z',t)$ do integrando. A integral I_p está calculada no apêndice D.

A componente longitudinal da força elétrica devida às cargas superficiais em uma carga-teste q_1 é:

$$F_{z}^{\phi}(x, y, z, t) = -q_{1} \frac{\partial \phi}{\partial z} = -\frac{q_{1}}{2\pi\varepsilon_{0}} \frac{\partial \sigma_{f}}{\partial z} \left[\ell_{x} \left(\ln \frac{\ell_{z}}{\ell_{x}} + \ln 2 + 1 \right) - \pi |y| \right]. \tag{42}$$

A componente longitudinal da força de Weber que envolve a aceleração dos elétrons de condução é dada por:

$$F_z^W(x, y, z, t) = -\frac{\mu_0 q_1 \sigma_c}{4\pi} \int_{-\ell_x/2}^{\ell_x/2} dx' \int_{-\ell_z/2}^{\ell_z/2} dz' \frac{\vec{r}_{1c} \cdot \hat{z}}{r_{1c}^2} \hat{r}_{1c} \cdot \vec{a}_c(z', t), \tag{43}$$

onde novamente utilizamos a aproximação de Kirchhoff para tirar $\bar{a}_c(z',t)$ do integrando. A integral I'_p está calculada no apêndice D. Finalmente, o potencial vetor magnético de Weber é dado por:

$$\vec{A}_W(x, y, z, t) = \frac{\mu_0 K}{2\pi} \left[\ell_x \left(\ln \frac{\ell_z}{\ell_x} + \ln 2 \right) - \pi |y| \right] \hat{z}. \tag{44}$$

Aplicando a segunda lei de Newton, com uma força resistiva do tipo $-bv_c$, onde $b=q_1\sigma_cR\ell_x/\ell_z$, e R a resistência da placa, subtituindo $q_1=-e$ e usando (35):

$$\frac{e\ell_x}{e\pi\varepsilon_0} \ln \frac{\ell_z}{\ell_x} \frac{\partial \sigma_f}{\partial z} + \frac{e\mu_0 \ell_x}{2\pi} \ln \frac{\ell_z}{\ell_x} \frac{\partial K}{\partial t} + \frac{eR}{\ell_z/\ell_x} K = m_e a_c. \tag{45}$$

Usando (14) e desprezando o termo que envolve a massa do elétron obtemos a equação da telegrafia (40), com $J \to \sigma_{\scriptscriptstyle f}$.

7.PROPAGAÇÃO DE SINAIS ELÉTRICOS EM DUAS PLACAS PARALELAS

Suponha que a transmissão do sinal elétrico seja agora feita por duas placas condutoras paralelas, idênticas e com dimensões ℓ_z e ℓ_x nos eixos z e x, respectivamente. As placas não têm espessura e estão localizadas em y=a/2 e y=-a/2. O eixo z é o eixo de propagação do sinal. A aproximação que utilizamos é:

$$\ell_z >> \ell_x >> x, y, z, a. \tag{46}$$

As hipóteses auxiliares que utilizamos são:

$$\sigma_{f,-a/2}(z,t) = -\sigma_{f,a/2}(z,t) = \sigma_f(z,t),$$
 (47)

$$K_{-a/2}(z,t) = -K_{a/2}(z,t) = K(z,t).$$
 (48)

Calculamos a auto-indutância deste sistema de duas placas. Para isso, temos:

$$\omega_{i} = \omega_{j} = \ell_{x}, \qquad \hat{\ell}_{i} = \hat{\ell}_{j} = \hat{z}, \qquad da = dxdz,$$

$$\vec{r}_{ij} = (x_{i} - x_{j})\hat{x} + a\hat{y} + (z_{i} - z_{j})\hat{z},$$

$$\hat{\ell}_{i} \cdot \hat{\ell}_{j} = -1, \qquad (\hat{r}_{ij} \cdot \hat{\ell}_{i})(\hat{r}_{ij} \cdot \hat{\ell}_{j}) = -\frac{(z_{i} - z_{j})^{2}}{r_{ii}^{2}}.$$

$$(49)$$

Substituindo em (15), obtemos:

$$d^{4}M = -\frac{\mu_{0}}{4\pi\ell_{x}^{2}} \left[\frac{1+k}{2} \frac{1}{r_{ij}} + \frac{1-k}{2} \frac{(z_{i}-z_{j})^{2}}{r_{ij}^{3}} \right] dx_{i} dx_{j} dz_{i} dz_{j},$$

$$M = -\frac{\mu_{0}}{4\pi\ell_{x}^{2}} \left[\frac{1+k}{2} I_{1} + \frac{1-k}{2} I_{2} \right].$$
(50)

No apêndice C apresentamos a resolução das integrais I_1 e I_2 envolvidas no problema. A indutância mútua entre as duas placas resulta:

$$M = -\frac{\mu \ell_z}{4\pi \ell_x} \left(2\ell_x \ln \frac{2\ell_z}{\ell_x} - 2\pi a + k\ell_x \right)$$
 (51)

de tal modo que a auto-indutância total do sistema fica:

$$L = 2L_1 + 2M = \mu_0 \frac{a\ell_z}{\ell_x},\tag{52}$$

onde $L_{\rm l}$ é a auto-indutância de uma placa, dada por (38) sem sua última aproximação.

A capacitância de duas placas é dada por:

$$C = \varepsilon_0 \frac{\ell_x \ell_z}{a}.$$
 (53)

Substituindo na eq.(2):

$$\frac{\partial^2 J}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 J}{\partial t^2} = \frac{\varepsilon_0 R}{a \ell_z / \ell_x} \frac{\partial J}{\partial t},\tag{54}$$

onde R é a resistência total do sistema ($R=2R_{\rm I}$, onde $R_{\rm I}$ é a resistência de uma placa).

6.2. Potenciais e forças

Mais uma vez vamos obter esta equação com a eletrodinâmica de Weber. O potencial e as demais grandezas são dadas por:

$$\phi(x, y, z, t) = \begin{cases} \frac{a}{2\varepsilon_0} \sigma_f (1 - 4y/\pi \ell_x), & y > a/2, \\ \frac{y}{\varepsilon_0} \sigma_f (1 - 2a/\pi \ell_x), & -a/2 < y < a/2, \\ -\frac{a}{2\varepsilon_0} \sigma_f (1 + 4y/\pi \ell_x), & y < -a/2, \end{cases}$$
 (55)

$$F_{z}^{\phi}(x, y, z, t) = \begin{cases} -\frac{q_{1}a}{2\varepsilon_{0}} \frac{\partial \sigma_{f}}{\partial z} (1 - 4y/\pi \ell_{x}), & y > a/2, \\ -\frac{q_{1}y}{\varepsilon_{0}} \frac{\partial \sigma_{f}}{\partial z} (1 - 2a/\pi \ell_{x}), & -a/2 < y < a/2, \\ \frac{q_{1}a}{2\varepsilon_{0}} \frac{\partial \sigma_{f}}{\partial z} (1 + 4y/\pi \ell_{x}), & y < -a/2, \end{cases}$$
(56)

$$F_{z}^{W}(x, y, z, t) = \begin{cases} -\frac{q_{1}\mu_{0}a}{2} \frac{\partial K}{\partial t} (1 - 4y/\pi \ell_{x}), & y > a/2, \\ -q_{1}\mu_{0}y \frac{\partial K}{\partial t} (1 - 2a/\pi \ell_{x}), & -a/2 < y < a/2, \\ \frac{q_{1}\mu_{0}a}{2} \frac{\partial K}{\partial t} (1 + 4y/\pi \ell_{x}), & y < -a/2, \end{cases}$$
(57)

$$\vec{A}_{W}(x, y, z, t) = \begin{cases} \frac{\mu_{0}a}{2} K(1 - 4y/\pi \ell_{x}) \hat{z}, & y > a/2, \\ \mu_{0} y K(1 - 2a/\pi \ell_{x}) \hat{z}, & -a/2 < y < a/2, \\ -\frac{\mu_{0}a}{2} K(1 + 4y/\pi \ell_{x}) \hat{z}, & y < -a/2. \end{cases}$$
(58)

Seguindo o procedimento já apresentado, fazendo as subtituições $b=q_1\sigma_cR_1\ell_x/\ell_z$ e $q_1=-e$:

$$\frac{ea}{2\varepsilon_0} \frac{\partial \sigma_f}{\partial z} + \frac{\mu_0 ea}{2} \frac{\partial K}{\partial t} + \frac{eR_1}{\ell_z/\ell_x} K = m_e a_c.$$
 (59)

Novamente usando (14) e desprezando o termo da massa do elétron, chegamos a (54), com $J \to \sigma_{\scriptscriptstyle f}$.

7. CONCLUSÃO

Neste trabalho derivamos a equação da telegrafia para condutores de geometrias diversas, conduzindo sinais eletromagnéticos. Utilizamos para isso a abordagem de Kirchhoff e Weber, calculando as forças que agem sobre as cargas de condução, i.e., a força de Weber. Podemos concluir que esta abordagem levou aos mesmos resultados conhecidos do eletromagnetismo clássico em todos os casos discutidos.

Agradecimentos

Um dos autores, J. A. Hernandes, gostaria de agradecer ao CNPq pelo auxílio financeiro durante o desenvolvimento deste trabalho.

Apêndice A: Cálculo das integrais dos cilindros

A integral I, eq. (8), pode ser calculada usando as aproximações $\ell >> a$ e $\ell >> r$:

$$I = \int_{0}^{2\pi} d\varphi' \int_{-\ell/2}^{\ell/2} \frac{dz'}{\sqrt{r^{2} + a^{2} - 2ra\cos\varphi' + (z - z')^{2}}}$$

$$= \int_{0}^{2\pi} d\varphi' \ln \frac{\ell/2 - z + \sqrt{r^{2} + a^{2} - 2ra\cos\varphi' + (\ell/2 - z)^{2}}}{-(\ell/2 + z) + \sqrt{r^{2} + a^{2} - 2ra\cos\varphi' + (\ell/2 + z)^{2}}}$$

$$\approx \int_{0}^{2\pi} d\varphi' \ln \frac{\ell^{2}}{r^{2} + a^{2} - 2ra\cos\varphi'} = \begin{cases} 4\pi \ln(\ell/a), & r < a, \\ 4\pi \ln(\ell/r), & r > a. \end{cases}$$
(60)

A integral I', eq. (10), também pode ser calculada usando a aproximação (3):

$$I' = \int_0^{2\pi} d\varphi' \int_{-\ell/2}^{\ell/2} \frac{(z-z')^2 dz'}{\left[r^2 + a^2 - 2ra\cos\varphi' + (z-z')^2\right]^{3/2}}$$

$$= I - \int_0^{2\pi} d\varphi' \int_{-\ell/2}^{\ell/2} \frac{(r^2 + a^2 - 2ra\cos\varphi') dz'}{\left[r^2 + a^2 - 2ra\cos\varphi' + (z-z')^2\right]^{3/2}}$$

$$\approx I - 4\pi \approx \begin{cases} 4\pi \ln(\ell/a), & r < a, \\ 4\pi \ln(\ell/r), & r > a. \end{cases}$$
(61)

Apêndice B: Cálculo das integrais da auto-indutância do fio maciço

As integrais envolvidas no cálculo da auto-indutância do fio maciço (18) são J_1 e J_2 , que surgem da integração da eq.(16) usando (17). Suas resoluções, apresentadas abaixo, usam a aproximação $\ell >> a$:

$$J_{1} = \iiint \frac{dV_{i}dV_{j}}{r_{ij}}$$

$$= \int_{0}^{a} dr_{i} \int_{0}^{a} r_{i} d\varphi_{i} \int_{0}^{2\pi} r_{j} d\varphi_{j} \int_{0}^{\ell} dz_{i} \int_{0}^{\ell} \frac{dz_{j}}{\sqrt{r_{i}^{2} + r_{j}^{2} - 2r_{i}r_{j}\cos(\varphi_{i} - \varphi_{j}) + (z_{i} - z_{j})^{2}}}$$

$$= 2 \int_{0}^{a} r_{i} dr_{i} \int_{0}^{a} r_{j} dr_{j} \int_{0}^{2\pi} d\varphi_{i} \int_{0}^{2\pi} d\varphi_{j} \left[\sqrt{r_{i}^{2} + r_{j}^{2} - 2r_{i}r_{j}\cos(\varphi_{i} - \varphi_{j}) - \sqrt{r_{i}^{2} + r_{j}^{2} - 2r_{i}r_{j}\cos(\varphi_{i} - \varphi_{j}) + \ell^{2}}} \right]$$

$$+ \ell \ln \frac{\ell + \sqrt{r_{i}^{2} + r_{j}^{2} - 2r_{i}r_{j}\cos(\varphi_{i} - \varphi_{j}) + \ell^{2}}}{-\ell + \sqrt{r_{i}^{2} + r_{j}^{2} - 2r_{i}r_{j}\cos(\varphi_{i} - \varphi_{j}) + \ell^{2}}} \right]$$

$$\approx 2\ell \int_{0}^{a} r_{i} dr_{i} \int_{0}^{a} r_{j} dr_{j} \int_{0}^{2\pi} d\varphi_{i} \int_{0}^{2\pi} d\varphi_{j} \left[1 + \ln \frac{2\ell}{\sqrt{r_{i}^{2} + r_{j}^{2} - 2r_{i}r_{j}\cos(\varphi_{i} - \varphi_{j})} + 1 \right]$$

$$= 2\ell \pi^{2} a^{4} \left(\ln \frac{2\ell}{a} + \frac{5}{4} \right)$$
(62)

A segunda integral é:

$$J_{2} = \iiint \int \frac{(z_{i} - z_{j})^{2} dV_{i} dV_{j}}{r_{ij}^{3}}$$

$$= \int_{0}^{a} dr_{j} \int_{0}^{2\pi} r_{i} d\varphi_{i} \int_{0}^{2\pi} r_{j} d\varphi_{j} \int_{0}^{\ell} dz_{j} \int_{0}^{\ell} \frac{(z_{i} - z_{j})^{2} dz_{j}}{[r_{i}^{2} + r_{j}^{2} - 2r_{i}r_{j}\cos(\varphi_{i} - \varphi_{j}) + (z_{i} - z_{j})^{2}]^{3/2}}$$

$$\approx 2\ell \int_{0}^{a} r_{i} dr_{i} \int_{0}^{a} r_{j} dr_{j} \int_{0}^{2\pi} d\varphi_{i} \int_{0}^{2\pi} d\varphi_{j} \left[-1 + \ln \frac{2\ell}{\sqrt{r_{i}^{2} + r_{j}^{2} - 2r_{i}r_{j}\cos(\varphi_{i} - \varphi_{j})}} \right]$$

$$= 2\ell \pi^{2} a^{4} \left(\ln \frac{2\ell}{a} - \frac{3}{4} \right)$$
(63)

Apêndice C: Cálculo das integrais da auto-indutância das placas

As integrais envolvidas no cálculo da auto-indutância das placas (51) são I_1 e I_2 , onde podemos tomar a=0 no caso da placa única(37). Para obter a auto-indutância das placas temos de integrar a eq.(15) . Disto surge:

$$I_{1} = \iiint \frac{da_{i}da_{j}}{r_{ij}}$$

$$= \int_{0}^{\ell_{x}} dx_{i} \int_{0}^{\ell_{x}} dx_{j} \int_{0}^{\ell_{z}} dz_{i} \int_{0}^{\ell_{z}} \frac{dz_{j}}{\sqrt{(x_{i} - x_{j})^{2} + a^{2} + (z_{i} - z_{j})^{2}}}$$

$$= \int_{0}^{\ell_{x}} dx_{i} \int_{0}^{\ell_{x}} dx_{j} \left[2\sqrt{(x_{i} - x_{j})^{2} + a^{2} - 2\sqrt{(x_{i} - x_{j})^{2} + a^{2} + \ell_{z}^{2}}} + \ell_{z} \ln \frac{\ell_{z} + \sqrt{(x_{i} - x_{j})^{2} + a^{2} + \ell_{z}^{2}}}{-\ell_{z} + \sqrt{(x_{i} - x_{j})^{2} + a^{2} + \ell_{z}^{2}}} \right].$$
(66)

Usando a aproximação (35), obtemos:

$$I_{1} \approx 2\ell_{z} \int_{0}^{\ell_{x}} dx_{i} \int_{0}^{\ell_{x}} dx_{j} \left[\ln \frac{2\ell_{z}}{\sqrt{(x_{i} - x_{j})^{2} + a^{2}}} + 1 \right]$$

$$= \ell_{x}^{2} \ell_{z} \left(2 \ln \frac{2\ell_{z}}{\sqrt{\ell_{x}^{2} + a^{2}}} + 1 \right) - 2\pi a \ell_{x} \ell_{z}$$
(67)

A segunda integral é dada por:

$$I_2 = \iiint \frac{(z_i - z_j)^2 da_i da_j}{r_{ii}^2}$$

$$= \int_{0}^{\ell_{x}} dx_{i} \int_{0}^{\ell_{x}} dx_{j} \int_{0}^{\ell_{z}} dz_{i} \int_{0}^{\ell_{z}} \frac{(z_{i} - z_{j})^{2} dz_{j}}{[(x_{i} - x_{j})^{2} + a^{2} + (z_{i} - z_{j})^{2}]^{3/2}}$$

$$\approx \ell_{x}^{2} \ell_{z} \left(2 \ln \frac{2\ell_{z}}{\sqrt{\ell_{x}^{2} + a^{2}}} - 1 \right) - 2\pi a \ell_{x} \ell_{z}.$$
(68)

Apêndice D Cálculo das integrais da placa condutora

A integral I_p envolvida na eq.(41) pode ser resolvida na aproximação $\ell_z >> \ell_x >> x, y, z$:

$$I_{p} = \int_{-\ell_{x}/2}^{\ell_{x}/2} dx' \int_{-\ell_{z}/2}^{\ell_{z}/2} \frac{dz'}{\sqrt{(x-x')^{2} + y^{2} + (z-z')^{2}}}$$

$$= \int_{-\ell_{x}/2}^{\ell_{x}/2} dx' \ln \frac{\ell_{z}/2 - z + \sqrt{(x-x')^{2} + y^{2} + (\ell_{z}/2 - z)^{2}}}{-(\ell_{z}/2 + z) + \sqrt{(x-x')^{2} + y^{2} + (\ell_{z}/2 + z)^{2}}}$$

$$\approx \int_{-\ell_{z}/2}^{\ell_{x}/2} dx' \left[\ln \frac{\ell_{z}^{2} - 4z^{2}}{(x-x')^{2} + y^{2}} + \frac{(x-x')^{2} + y^{2}}{(\ell_{z} - 2z)^{2}} \right]$$

$$= 2\ell_{z} \left[\ln \frac{\ell_{z}}{\ell_{x}} + \ln 2 + 1 \right] - 2\pi |y|.$$
(64)

A integral I'_p envolvida na eq.(43) também pode ser resolvida na mesma aproximação:

$$I'_{p} = \int_{-\ell_{x}/2}^{\ell_{x}/2} dx' \int_{-\ell_{z}/2}^{\ell_{z}/2} \frac{(z-z')^{2} dz'}{[(x-x')^{2} + y^{2} + (z-z')^{2}]^{3/2}}$$

$$= I_{p} - \int_{-\ell_{x}/2}^{\ell_{x}/2} dx' \int_{-\ell_{z}/2}^{\ell_{z}/2} \frac{(x-x')^{2} + y^{2}}{[(x-x')^{2} + y^{2} + (z-z')^{2}]^{3/2}} dz'$$

$$\approx I_{p} - 2\ell_{x} = 2\ell_{x} \left[\ln \frac{\ell_{z}}{\ell_{x}} + \ln 2 \right] - \pi |y|. \tag{65}$$

Referências

- [Ass00] A. K. T. Asis. On the propagation of electromagnetic signals in wires and coaxial cables according to Weber's electrodynamics. *Foundations of Physics* **30**, 1107-1121 (2000).
- [BA98] M. A. Bueno e A. K. T. Assis. *Cálculo da Indutância e de Força em Circuitos Elétricos*. Editora da UFSC/Editora da UEM, Florianópolis/Maringá (1998).
- [Jac75] J. D. Jackson. *Classical Electrodynamics*. John Wiley, New York, 2ª Edição (1975).
- [JM86] C. Jungnickel e R. McCormach. *Intellectual Mastery of Nature*, Volume 1. University of Chicago Press, Chicago (1986).
- [Kir57] G. Kirchhoff. On the motion of electricity in wires. *Philosophical Magazine* **13**, 393-412 (1857).
- [LLP84] L. D. Landau, E. M. Lifshitz e L. P. Pitaevskii. Electrodynamics of Continuous Media. Pergamon, Oxford, 2^a Edição (1984).
- [Whi73] E. Whittaker. A History of the Theories of Aether and Electricity, Volume 1: The Classical Theories. Humanities Press, New York (1973).

JÚLIO AKASHI HERNANDES E-mail: julioher@ifi.unicamp.br ANDRÉ KOCK TORRES ASSIS

E-mail: assis@ifi.unicamp.br;
homepage: http://www.ifi.unicamp.br/~assis
Instituto de Física "Gleb Wataghin"
Universidade Estadual de Campinas – Unicamp
13083-970, Campinas – São Paulo, Brasil