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RESUMO

Para o problema de programação não-linear separável discreta

relativo a grafo. são desenvolvidas as técnicas para solução imediata e para

otimização por partes. As duas fundamentam-se no método de programação

dinâmica que resulta em um algoritmo de programação dinâmica embutido

dentro do outro. Ambas utilizam essencialmente a estrutura do grafo do
problema. A aplicação múltipla do particionamento gera uma técnica

hierarquicamente recursiva do método de programação dinâmica.

SUMMARY

We developed the techniques for immediate solution and
optimization by parts for discreta nonlinear separable programming problem on

the graph. These two techniques are based on lhe use of the dynamic

programming method that results in obtaining one algorithm of dynamic

programmínq built into another one. The both techniques make use of the
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graph structure. Multiple use of the decomposition is generalized in the frames

of the hierarchically recurrent algorithm of dynamic programming.

1.INTRODUCTION

Let us consider the following separate discrete separable

problem of nonlinear programming on the graph :

subject to : (2)A G(X)~ B.

g1(X1)
b1

g2(X2)
G(X)= B=

b2

gn(Xn)
bm

Where:

A =11aij 11is the (m . n ) matrix of incidences in paths connecting

sources and sinks of the graph "

The graph .(V,E) is the directed and valued tree graph; Xj, f j( Xj ),

and 9 j(Xj) are the variables and funclions, connected with its edges e E E.

The components of lhe vector X( x-, X 2, .•. xn) are non-negative

and are restricted by requirements imposed on discretness ,that is

Xj;::Q, xjED , for VXj E X (3)

Here, D is the set of discrete magnitudes of variables .

Wilhin lhe slruclure of the model (1)-{3), one can formalize a

number of network problems related 10 lhe resources dislribution optimization,

lhe problem of Iransportalion, lhe network developmenls, lhe optimal decision

problems, and others [1-6].
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The dynamic programming method (OPM) finds its effective utility

when solving the given class problems including both the problems of formal
optimization [1-3] and the problems of practical engineering applications [4-7] .

The explanation of high effectiveness of the method as applied to

the graph problems is in the very essence of the method itself : because the

solution procedure, in accordance with this method, is the welf-adapted to

the tree graph structure. This circumstance makes it possible to eliminate the

necessity of multiple-state process ,even if the system (2) has many a
number of constraints imposed.

Making use of this advantage we developed a OPM modification

as applied to the energy distribution optimization [7,8]. The graph . represents
in this case the netwark configuration ; the functions gj( Xj) take meanings of
voltage loss, and the optimization variables are the cable sizes.

In the herein-presented paper we attempt to generalize the

above-mentioned approach to the solution of the problem (1)-(3) by parts.

Multiple hierarchical use of such generalization has led, as a result, to the
creation of the built-in recurrent OP algorithm .

2. ALGORITHM OF IMMEDIATE OPTIMIZATION

In the process of immediate optimization we consider the original

structure of the graph . of the problem (1)-(3).

As applied to the problem given the OP method uses the natural
tree-graph hierarchy for cases when the source is connected with the higher

hierarchy levei (y=Y) and when the sinks belong to the low levei (y=1),

(Fig.1). There form , thus, the set of the levei Y = { Y I Y = 1, 2,. '" Y} .
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In order 10 lhe state space discrelizalion • we shall inlroduce lhe

following sequence of veclors :

B =={B(I;) / ç ==1.2•.....•D}.

where

B(I;)=={bi~) /bi(~) ==.. i • i==1.2 •...• {n+1}} •. ==1.2•...•D};

Lli ==bi/O.

Here LI; is lhe slep of discrelization.

2.1: Procedure of solution

The DP process is implemented in the structure of the graph r.
Following the general DPM loqlc, lhe multislage decision process consisls of

two procedures . Ihat is lhe direct steps and lhe inverse steps.

2.1.1: Direct steps

The problem is solved in these steps by moving from sinks to the

sources of lhe graph .. Making use of the Bellmann's principie of optimality
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[2.3] we are able 10 oblain in lhe problem (1 H3) lhe recursive relalion in the

form of lhe following sub-problem:

For '<:fé, = 1.2 •...• D. find :

fi< (é,) = min (fj(Xj)+ IFi (1jI)}.
x"IjI IEY(y_l~

(4)

subjecllo

(5)

(6)

1jI=1.2 •...• D

k.jEYy i EYy-1.'

where Yç and Yy-l are lhe subsets of vertices and edges of levels y and

(y -1), respeclively; k, i are lhe inilial and final vertices of lhe edge j; b k (~)

and bi(ljI) are lhe componenls of 8, where bk(ljI) = bi(ljI) was renewed

in the previous steps.

The renewal of 8 must be done in every step ; in so doing, the

following relalions are used :

bk(I;)=max [bj(IjI*)+gj (xj(1;))], (for :'<:fk EYy and '<:fI; = 1,2, ...• D). (7)
jEYYk

Here, Yyk is lhe subsel of edges adjacent 10 lhe vertex k of

the levels equal 10 y= P or lower; bi(IjI*) are lhe componenls of 8

associaled wilh lhe final vertex of these edges . These componenls were

already corrected in the previous steps .

The use af renewal makes it passible 10 lower lhe redundancy of

resaurces in lhe final solution, and, hence, 10 exclude lhe mistakes of

discretizalian.
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The sum in (4) consists of the optimal solutions FI (1jI)

connected with the edges (I E Y(y-1)i) of levels equal to (y-1 ) or lower,

which are adjacent to the final vertex of j; Y(Y-1)i is the subset of such

edges. These solulions can be obtained in the previous steps.

The optimal values being found, that is, Xj (I;) ,ljIi * (I;) and

Fk(I;), and also, b k (1;) = bk(i;) are stored in tables for Iheir use in subsequent

steps. Fig. 2 presents the model of these tables.

I; Xj Fk ljIi bk

1

2

I; x j(i;) Fk(l;) ljI i(i;) bk(i;)

O

Fig.2.

Owing to the recursive character of (4)-(7), the values of Fi(ljI)

and bj(ljI) needed for calculations in the step y are always available and

stored in the array of dala obtained in previous steps,

In development, the recursive use of (4H7) gives lhe following

recursive algorithm:

Step 1 (p=1 ): Here we consider lhe edges j of lhe first , Ihat is

, the lowesl leveI ( y= 1 ) adjacent to the sinks. For lhe case shown in Fig.1 , j

= 11, 12, ,Im •
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For every of these j, a number of optimization sub-problems

(4)-(6) are being solved ; these are trivial in nature, and the recursive relation

takes here its reduced particular form, i. e.

For v I;= 1,2, ... ,D, find xj (1;) so that

Fj(I;)=fj[xj(Ç)] = min fj(xj),
xI

(8)

subject to: (9)

Xj ~ O , Xj E O ,

Here, the vertex k is the initial vertex of the edge j (in Fig.1

k = i, i1Ej, ji); x/(I;) is the optimal magnitude of Xj for given I; ; Y 1 is

the sub-set of vertices and edges of the leveI 1.

Making use of the so-obtained xj·(I;), we compute b i (ç) for B

for ali vertices i of the first leveI (iEY1) with the use of expressions ( 7 )

bk(l;) = max 9j[xj (1;)),
jEY1l

I;= 1,2, ...,D.

Here Y1k is the sub-set of ali edges of the leveI 1, that are

adjacent to k. The optimal values Xj· and Fk(l;)= f/(I;) = !j[x/(I;)) ,and also

bk(ç) = bk(l;) renewed are stored can in one of the tables. Fig.3, line y =
1, presents these tables used in the step 1 .
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1m

r ç x; (~) FI (ç) r ç x; (ç) FI (~) .....rIt,= 1jI~

t, = 1jI; I

I':, x; (1;) FI (I':,)

I I

t,

I I I
= 2 : - j

Vi!,) iJ r-+
J,

vi!') J~ I:, xi (1:,) r. (t,) ç xi (t,) Fk (1:,)
= 'V' I; = \jI~

=Y: k

• I; x~ (1;) Fn + 1(1;) 1jI~ (1:,) ~

Fig.3.

Step 2 (p = 2 ): In this step, we optimize ali branches that are

incident to the vertices of the levei y = 2 . For every vertex k and every

edge j of the levei 2 connected with this vertex , we solve a number of the

following sub-problems :

For V s=1.2 •...•D. find:

fi«ç)=min {fj (Xj)+ LFi [x~(s)]}
Xj''I' IEY"

(10)

Subject to:

9j(Xj) ~ bké,) - bi(IjI).

Xj~O, XjEO, (11 )
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",==1,2, ... ,D

k, j E Y2' I E Y1

The sum in (10) takes account for ali edges-sinks I E Yu

adjacent to the edge j in its end j (belonging to y = 1 ).

The set 8 is renewed for Vi E Y2 in accordance with the

following formula:

bk(1;)==max [bj(1;)+9j(xj(1;}}]'
jEY2i

(V1;=1,2, ... ,D)

Here, Y2i is the set of backward edges of the vertex of

the levei y = 1 ; 2.

The step 2 results thus in intermediate optimal solution for every

edge of the levei 2 and ali of its backward edges of the levei 1. These optimal

solutions are represented in the form of a function of resources associated with

vertices of the levei 2.

Step 3,4 .... ( P = 3,4 ... ): In this and ali subsequent steps, we

repeat our calculations that are similar to those made earfier ; in doing so, we

make use of the relation (4)-(7) in its general complete formo In every step of

these calculations, we consider the vertices and edges belonging to the levei

y = p. For every ofthese edge j E Yy its forking branches are optimized .

The steps of iteration must be continued until the higher levei y

= Y be reached, more specifically, until the source of the tree graph be

reached. In this stage, we determine the values bk (~) (they are equal to

b(N+l) ).

Last step (p ==Y): In the last direct step, we make use of the

recursive relations (4)-(7) in the form of the following special problem :

Find

F(n+1)(1;)==Z==min {fj(xj)+ IFi(",)};
xj'1jI IEY(Y.l)n

(12)

subject to:
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Xj ~o, Xj e O (13)

ljI =1,2, ...,0

(n+1)jeYy,neYY_1

Here, Fk(ç) = F(n+l)(Ç)= Z, that is, it represents the economic

criterion for the whole graph .. The solution of (12)-{13) makes it possible to

determine its minimum as a function of the available resources b(n+l) .

If b(n+l) is known, the relations yield the definitive optimal

solution for the initial edge and give the optimal value for the parameters x/

and 1jI. of its final vertex .

In doing it, use can be made of the inverse steps process

whose function is to obtain the definitive optimal solution for ali other edges and

vertices.

2.1.2: Inverse steps.

In the last direct step the optimal solution for the edge adjacent

to the source ( y = Y;1 ) was determined . We determine here also the optimal

values for 1jI., and for every vertex n of the levei (Y-1) that represent the

final ends of such edges.

Technically, it means that the oplimal solution for the source

specifies the optimal values of parameters, distributed throughout the rest of

the graph.
The vertex n represenls, in its turn, the source for the section

trees of such point derivation. For this reason, if bn(IjI·) is known, the results

of oplimization in the next to last step p = ( y-1 ) contain the optimal solutions

for backward edges adjacent 10 vertices n (y = ( Y-1 );1 ). The afore-

mentioned results are stored in lhe lables of date on Ihis next to last step or
the step p = 1.
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For finding of a solution for one edge y = Y-1, it is sufficient to

enter the corresponding table it its line with the number ç = 1jI". The

value of Xj" written in this table will be the sought optimal solution. This very

line gives the optimal value for the parameter ç = 1jI" of the vertex of the levei

(Y-2), l.e., the final vertex of the reference edge.

The value bn(IjI") generates, thus, the complete set of optimal

solutions for the edges y = Y-1. We determine simultaneously the optimum

bk(IjI") in ali vertices of the levei y = Y-2, which make it possible to find

optimal solutions bi(IjI") for the edges y = (Y-2) at vertices of the levei y =

(Y-3), and so on.

The procedure is continued until y = 1 be reached (when the

edges adjacent to sinks are achieved ). At this moment the inverse procedure

completes, and, as a result, we obtain a number of optimal values for ali

variables Xj E X ofthe initial problem (1)-(3).

Figure 3 presents the schematic tracing back trajectory (shown

byarrows).

The fact, that the optimal and the admissible intermediate

solutions are available in tables for every step of direct process, can guarantee

the optimality of solutions obtained and the satisfaction of constraints imposed.

The DP method ensures, in its tum, the achievement of the

global optimum for a solution given .

3: DECOMPOSITION

The afore-described DP algorithm can be extended to the case

of solving the problem (1)-(3) by parts. Instead of the formal decomposition of

the problem (1)-(3), it would be more appropriate, to make use of the

advantage of the own graph structure in its partition.
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With this aim, we carry out the partition of the initial graph r
(V,E) into the section graphs r; (V;,E;), i=1 ,2, ... , N, in a way shown in FigAa.

The decomposition is carried out here by cutting of certain

vertices. It is obvious that ali ri are trees. It is of importance that the partition

is carried out so that every sub-tree has maximum two points of connection

with other sub-trees. Connections with sinks can be multiple.
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y'" 2 I
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3.1: Graph of Decomposition

Taking account of the fact that ali the section graphs r; ,
i=1,2, ... ,N have two points of interconnection, the method of condensation

offer the possibility of their transformation into the generalized edges, and

introduce, in such a manner , the generalized graph of the problem, let us call
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it the graph of decomposition n (C.S) (FigAb). The elements of this graph are

the set C of the separation points and the set S of the generalized edges

The graph of decomposition represents the directed graph of the

tree-like structure. It is also the valued graph and its components c, EC. Sj E S

contain therefore the characteristics of the corresponding section graphs n.
The vertices and the edges of the graph n can be arranged

hierarchically in a way shown in FigAb, similar to that applied earlier for the

graph r.
To implement it, there exist ali conditions for organization of the

DP process with subsequent finding of an optimal solution of the problem (1)-

(3).

This process can be build on the graph n by using the

method that is similar to the immediate optimization method. The solution

procedure here moves from step to step from the generalized edges of lower

levels until the optimal solution for the source of the graph n is found. In

each step P. we solve the sub-problems related to the optimization of

edges of the graph n of the levei y1= P together with their branches of the

preceding levels whose optimal solutions have already been found in the
previous steps.

One reduction of the recursive relation is carried out in every
step.

3.2: Recursive Relation

In its general formo the recursive relation is related with the

arbitrary step p in which the optimality of derivations of n for the levei y1 = P

is examined. For every of thern, a number of the following sub-problems is
solved:

For VI;= 1.2 ....• D. find:
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(14)

subject to:

bl('V) ~ bk(I;

'V=1,2, ... ,D

k,jEY~, IEY~_1

where: f 'J(I;,'V) is the solution of the optimization problem that is associated

(15)

with the section graph

Minimize:

z min L: fi~i
jEEJ

(16)

subject to

Xi ~ O , xi ED ,

where: v', and Y 1 (y.1) are the sub-sets of vertices and edges of the graph

n for the levei y1 and y1 -1, respectively; I , K are the initial and the

final vertices of the edge J of the graph n: b,(~) and bK(IjI) are the

components of B, connected with the vertices of this edge, where bk('V)

is renewed in the course of the previous steps realization. The process of

renewal in these steps takes place automatically when solving the problems
(16),(17).

Sum in (14) unites the optimal solutions FL(IjI) that are

related to the edges of the levei y 1 -1, which are adjacent to the final vertex

of the edge J. These solutions are found in the previous steps.

The optimal values of '1"(1;) and FK(I;), and also the

renewed value of bK(~)= bK(I;), are stored in tables for use in subsequent

steps of calculations.
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In development, the recurrent use of (16),(17) results in a

possibility of constructing the direct steps algorithm.
The recurrent relation takes its trivial form in the first step that

consists in solving the sub-problems (14),(15) alone. It is related with the

section graphs rJ condensed in the generalized edges adjacent to the sinks of

the graph n.
In the last step too, this relation is distinguished by one

peculiarity, since E, is unique and b K (E,) = b (N+1) (E,) = bn+1 is known and it

makes it possible to obtain the definitive solution for edges of higher levels and

vertices of preceding levels. Further, the procedure of inverse steps has

conditions for being developed.
Use of inverse steps makes it possible to determine the optimal

parameters of the points of seperation with the aim of finding optimal
solutions for every section graph, and the problem can be solved in a similar

way by parts depending on sizes of the section graphs rJ (J=1,2,...,N).

In solving the sub-problems (16),(17) use is made of the OP

algorithm, and, as a result, we have one algorithm of OP process the built into
another one.

3.3: Multlple Decomposition

The use of OPM at both levels of solution of the problem (1)-(3)
offers a possibility of realizing two types of decomposilion : the geomelric
partilion and lhe recurrent partilion of problem.

With the geometric partition, the process is carried out in one

step on which the graph r is partitioned once and for ali into the section graphs

r, (J=1,2,...,N) of necessary sizes. After that, the problem is solved by using

the OP process as applied to the relations (14),(15),and also by solving the

sub-problem (16),(17) with the use of immediate OP algorithm and the

recursive relations (4)-(6).
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The recurrent partition is in its essence of hierarchical character.

It is supposed that the sub-problem (16),(17) can be partitioned, in tum, into

more smaller sub-problems by introducing 50 the second levei of partition;
these problems can be solved again either immediately or by parts, and 50 on.

The process of partition can be then repeated recurrently by building
hierarchically, in such a manner, one DP process into another one until the

sub-problem (16),(17) of required size be obtained. In the limiting case of

recursive partition the section graphs rJ coincide with the initial graph edges.

In these cases, the algorithm of partition is converted into the immediate DP

algorithm connected with the relations (4)-(6).

These facts make it possible to conciude to suppose that there
exist, for this type of partition , same optimal sizes of the section graphs.

Besides, the process of implementation for both types of partition

is always of multi-variant character, even in the presence of section graph sizes
predetermined.

There appears thus the problem of partition optimization where

we determine a number, size, and structure of the section graphs rJ
(J=1,2,...,N). Optimal partition may be submit to criterion of optimization of

memory resources, or time resources, or be the combination of both.

The problem of partition optimization needs more thorough and
deeper specific studies, its discussion is here omitted, and we leave it for
consideralion of future researchers.

CONCLUSIONS

Based on lhe dynamic programming method, we developed the
algorithm for immediate solution and the technique of optimization by parts for

the separable nonlinear programming problem as applied to its tree-like graph.

Within the limits of dynamic programming algorithm, significant
use is made of the graph structure and its natural hierarchy. On this basis the
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recursive relation of immediate optimization process in its general form was
obtained. Besides, its particular forms were obtained for use in the firsl and the

lasl steps.
The technique of solution by parts uses partition of the problem

graph by means of cuts in vertices . The condensation of section graphs

obtained results in the generalized graph, lhe so-called graph of decompositiàn.
In this paper the decomposition problem is solved wilh the use of the dynamic

programming algorilhm that is identical to that used in immediate optimization.

One and the same hierarchical form is used here for the graph of

decomposition, and the section graphs are treated as some generalized edges.

For this case, we obtained the recurrent relation where was used, for solving
sub-problems as applied 10 the section graphs, lhe algorithm for immediate

dynamic programming. Thus, Ihere takes place the solution by parts within the

scope of one dynamic programming process buill in lhe other .
The herein-presenled paper discusses the problem of multiple

decomposilion, potentialilies of geomelric and recurrent partition, and also lhe

problem of lhe partition optimization.
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