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1 INTRODUCTION

In the study of many phenomena in the physical world, one is

interested in describing the long time behavior of certain observables. That

is the case, for example, of the principles that govern the radar, the sonar

and the dispersion of light waves.

Scattering Theory deals with the long time behavior of evolutions

systems that are subject to interactions. One of the main problem consists

in studying this behavior, knowing in advance the corresponding interaction.

On the other hands, in practice, it is probably more interesting the so called

inverse problem , which consists of determining the nature of the interaction

from the knowledge of some observations made in the long time scale. This

is clear in the examples just mentioned above.

Furthermore, Scattering Theory was principally developed for un-

derstanding the laws and principles present in Quantum Mechanics. Several

quantum experiments can be described in the context of scattering theory,

since the interaction one expects to describe is inaccessibIe, not because it

is distant; like in the case of radar, but because it is to small, usually the
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size of atoms and molecules. Also from the mathematical point of view, the

development of scattering theory has been successfully achieved because of

the advances on Operator Theory in the last decades.

The Schrõdinger equation describes the evolutions in Quantum
..

Mechanics. It can be written in an abstract context as
•au

i-=Hu,at (0.1)

where H represents an operator acting in some Hilbert space 1í which is a self-

adjoint perturbation of a free self-adjoint operator H«. The usual example is

Ho = -~, the spatiallaplacian in R" and H = -~ + V, for some function

V which acts by multiplication in the Hilbert space L2(Rn).

The corresponding evolution equation in classical mechanics is

Newton's equation

(0.2)

which describes the movement of a particle in R" with position x under the

influence of a force field F(x, t).

These notes are an attempt to show the main ideas and some

techniques used in Scattering Theory, avoiding the complexity of quantum

mechanics and its mathematical formalism. We shall do it by working di-

rectly with the classical Newton's equation, and we will show that these ideas

became fruitful and interesting also in this classical framework.

From the point of view scattering theory, the study of the long

time behavior of the solutions of equation (0.2) is achieved by comparing it

with the solutions of cerlain free equation. It is natural to consider as free

equation the one where there are no forces acting on the particle, that is,
e

F =0.

In others words, we shall compare the asymptotical behavior of

the solutions of (0.2) with the corresponding behavior of the solutions of the

free equation fi = O , when t goes to infinity.
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1.1 PRELIMINARIES AND NOTATIONS

Under adequate condit ions ou the force F(I. t). the equat ions

(0.2) has a unique global solution with given initial position iu to . .T(to) ..::.a

and initial velocity I'(tO) = b. \Ve denote this unique solut ion as I(t. to: o. b)

anel we simply write :r(t; a. b) when to = O. \Ve rernark that we have simplified

the form of Newton equation by choosing adequare physical units.

For example, the solution of the free equation i = O, with initial

conditions x(to) = a, x'(to) = b, it is given by x(t. to; a, b) = a + b(t - to).

It is common to describe the movement of a classical part.icle

using the concept of state. With the above notation the initial state is the

pair (a.b) and the state at the time t is (x(t:a.b).I'(t:a,b)). The collection

of ali states is called the phase space .

ln chapter 2 we introduce the concepts of t his theory and we

discuss the direct problern in diruension TI = 1 and TI = 3. Finally, in Chapter

3 we face IIp the corresponding inverse problern.

2 DIRECT PROBLEM

We denote by E the phase space R" x R" and we call Eo the

subset of E of states with nonzero velocity, that is:

Eo = {(x, y) E E / y =1= O}.

Definition 1 The wave operaiors W± are [unciions defined on Eo by

lim IIx(t; x±, Y±) - (q + pt) II = O
t-±oo

ln other words, the solutions x(t; x±, Y±) of (0.2) with initial data

(x±, y±) behave as the solution q + pt of the free equation i = O , as t

approaches ±cx: .
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Definition 2 We say that the wave operaiors W± for system (0.2) are' asymp-

totically complete' if Ran W_ = Ran W+, uihere Raii W± denote the im aqe of

ihe transjormaiions W±.

According to this definition, if the wave operators W± are com-

plete then for a given state (:Z.+. Yt) E Ran H'; = Ran W_ there exist states

(q.p). (a,b) E ~o, such that
•

Therefore, if the wave operators are asymptotically complete we can define

the following rnap,

Definition 3 The scatterinq operator S is defined as

Its domain D(S) is a subset of ~o which differs from ~o by a set

of Lebesgue measure zero, see [8]for details.

In other words, S (q, p) = (a, b) if and only if there exists a unique

solution x(t) of the equation (0.2) satisfying

lim i(t) = p, lim (x(t) - pt) = q
t-+-oo t--oo

(0.3)

and

lim x(t) = b, lim (x(t) - bt) = a.
t-+oo t-+oc

(0.4)

That is, the perturbed trajectory x(t) is asymptotic to q + pt ,

as t approaches -00 and x(t) is asymptotic to a + bt as t approaches to

+00. We denote (0.3) and (0.4) shortly as x(t) ~ q + pt and x(t) ~ a + bt

respectively.

Throughout this notes we shall assume that V (x) ~ o.
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2.1 AUTONOMOUS CASE

The autonoruous case corresponds to' a trajectory J' (t) in R" of a

classical particle which it is goverued bv the Newtou's equation

i = F(.I') (0.5)

where the force F act ing ou t lie part icle depends ouly on the posit ion of it.

We shall de ai with the conservative case. that is, we assume that there exists

a continuous differentiable potential V(:r) such that V(:r) -+ O as 11:r1l-r-r cc
and F(:r) = -\7 V(.T).

Under this force F the svstem (0.5) is conservat ive, m other

words, the-energy E of a solution J·(t) of the equat ion (0.5)

1 2E = -ij.i:(t)1I + V(:r(t))
2

(0.6)

is const aut ou time. whicli can be directlv proved by showing that the deriva-

tive with respect to t of E ts zero.

Throughout these notes we shall assume that the potential F =
- \7V (J') satisfies the following condit ions:

C1 There exist C > O and F > O such that for all :r E R",

C
IIF(:r)11 ::; (l + 11.1'11)2"

C2 F (:r) is locally Lipschitz aud cont inuous in R"

C3 There exist r > O , C > O and b > O such that

CIIF(:r) - F(y)11 ::; ~llx - yll
r

for ali x,y verifying IIxll, Ilyll:::: r.

The hypothesis (CI) and (C2) assure the existence and uniqueness
\

of global solutions of equation (0.5) with prescribed initial conditions x(to) =
q , x(to) = p.
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The proof of the next result can be found in [8], and it assures

the asymptotic completeness of waves operators for system (0.5).

Theorem 2.1 If F = -\I satisfies conditions (Cl),(C2) and (C3) then W+

and W _ exist and they are complete, that is, Ran W+ = Ran W_.

We mention that similar result about existence has been studied

in [3] for the non autonomous case (0.2). Also, a Hilbert space aproaching

has been discussed in [2J. Also [4J,[5],[6],[7Jand [8Jare important references

about this subject.

2.2 THE DIRECT PROBLEM IN DIMENSION ONE

Now we will find an explicit formula for S in dimension n = 1, for

the autonomous case generated by equation (0.5), that is, F(x) = -V'(x).

Let us begin with the following result ,
t

Lemma 2.1 Assume that (q,p) E D(S) and S(q,p) = (a.,b).

a) Ifp2 > 211Vlloothen b=p

b) If p2 < 211V1loothen b = -p.

Proof Since V(x) converges to zero as Ixl approaches infinity, we get from

the energy identity (0.6) that 2E = b2 = p2. Assume that p2 > 211V1100

and p > O. Suppose that b = -p, then it is clear that x( -00) = -00 and

x(+oo) = -00. Therefore, there exists to E R such that :reto) = O, which

contradicts (0.6). A similar argument is applied to the case p < O . Thus

proving statement a).

Assume now that p2 < 211V1100and p > O. If b = p , then

x (- 00) = - 00 and x (+00) = +00 .Therefore , there exists to E R such that

V(x(to)) = 11V1100. Again from conservation of energy (0.6) ,we obtain that

(x(to))2 + 211V1100= p2 which contradicts our assumption. The case p < Ois

treated in a similar way.



33
Let us define the following sets, which will play an important role

in the characterization of the domain of the scattering operator S .

E_ {x E R/ V'(x) = Oand V(x) < V(y) ,for a11y<x}

E+ {x E R/ V'(x) = Oand V(x) < V(y) ,for a11y > x}.

That is, E_ ( E+ ) consists of the local máxima of V(x) which can be seen

when one looks from -00 (+00). Clearly both V(E_) and V(E+) are

measurable sets with Lebesgue measure zero.

Theorem 2.2(Characterization of the domain of S )

a) Let p> O . Then (q,p) E D(S) if and only if p2/2 (j V(E_)

b) Let p < O . Then (q,p) E D(S) if and only if p2/2 (j V(E+) .

In particular, the set Eo - D(S) has Lebesgue measure zero.

Proof Assume that (q,p) E D(S) and p > O .We may assume that p2 <

211V1loo. Set (a,b) = S(q,p) and let x(t) be the solution of equation (0.5)

which is asymptotic to q + pt as t --> -00 and asymptotic to a + bt as

t --> +00.

By Lemma 2.1 ,we have that b = -p and therefore x( -00) = -00

and x(+oo) = -00. Hence, there exists tI E R such that x(td = O.

If Xo E E_ is such that p2 = 2V(xo) then from (0.6) we conclude

that V(x(td) = V(xo) and therefore X(tl) 2: x(to). Since x(-oo) = -00

, there exists t2 E R such that X(t2) = zu . Hence V(X(t2)) = V(xo).

By (0.6) we conclude that X(tl) = o. Finally, by uniqueness of the initial

value problem for equation (0.5), we have that x(t) = Xo for all t, which is

a contradiction.

In order to prove the reciprocal, let us take p be a positive con-

stant such that p2/2 ri- V(E_). Set (x,y) = W_(q,p) and x(t) = x(t;x,y).

Suppose first that p2 > 211Vlloo . Then, by conservation of energy, we have

that



which shows-that .x (t) is unbounded as t converges to +00 . By the argument

given jn [~l..-tlúsíS enough to conclude that (x, y) E W+ and so (q,p) E D(S).

-Now,-iet us consider the case p2 < 21IVlloo and let Xo E E_ be

the smallest point in this set such that p2 < 2V(xo) . Then, there exists

x~ < Xo verifying p2 = 2V(XI). Clearly we have that V'(xd > O and

V(y) < Vexo), for a~y < Xl'

We claim that there exists tI E R such that x(td = Xl. Suppose

that this is false.

Since x( -00) = -00 we would have that x(t) < Xl , for all

tER. Hence V(x(t)) < V(xd , for all t E RBy conservation of energy, we

have that x(t) # O, for all t E R .

Since i(-oo) > O, it follows that x(t) is a strictly increasing

function of t and therefore x(oo) = limt~+ocx(t) exists, i(oo) = O and

x(-:Xl) = Oand x(oo) ~ Xl' It folIows that X = Xl and therefore x(oo) =
-V'(xd < O, which contradicts the fact that x(oo) = O, thus proving our

claim.

From (0.6) we have that x(td = O. By uniqueness ofthe solution

for (0.5) with given initial data, we deduce that X(tl - t) = X(tl + t) , for all

t E R .This shows that (x, y) E Ran W+ and so (q,p) E D(S). A similar

argument proves b).

Let us denote, for p2 > 2V(x), A(x,p) == AI'(X,p) the expression

A(x,p)= p _!!.....
Vp2 - 2V(x) Ipl

Also, we write for p2 < 21IVlloo

(0.7)

ll'(p) = ll'v(PJ

f3(p) = f3v(p)

inJ{x E R /p2 = 2V(x)} iJ v > O,

inJ{x E R /p2 = 2V(x)} iJ P < O.

Now, with the notation just introduced we state the following
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result, which gives the formula for the first component of S.

Lemma 2.2 Let (q,p) E D(S) and (a, b) = S(q,p).

i) If p2 > IIV1100 then

1+00
a=q- -00 A(x,p)dx

ii) If p2 < 21IVlloo and p> O then

r:a = -q + 2a(p) + 2 -00 A(x,p) dx

iii) If p2 < 211V1100and p < O then

a = -q + 2,B(p) + 2 (oo A(x,p) dx.
J(3(p)

Proof We first prove i).

Let us assume that p2 > 211V1100and p > O (the case p < O can

be treated in a similar way). Then x(t) #- O for ali t and since x( -00) > O

we have that x(t) > O, for ali t. By solving equation (Ó.6) and integrating

in [to, t] we obtain that

l,"(t) dx
t - to =

x(to) Vp2 - 2V(x)·
(0.8)

This last identity implies the following relation:

-(x(t) - bt) + (x(to) - pto) -x(t) + x(to) + b(t - to)t:A(x,p) dx ,
x(to)

which proves assertion i) by taking t --+ 00 and to --+ -00 .

Let us prove ii).

Suppose that p2 < 211V1l00andp > O. By Lemma2.1, x(-oo) =

-00

x(oo) = -00 ,x(-oo) = p > O and x(oo) = -p < O. Hence, there exists

to E R such that x(to) = O and, as in the proof of Theorem 2.2, it folIows
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that x(to - t) = x(to +t) , for ali tER. In particular, such to is the unique

critical point of x(t). By symmetry, we can write

x(t) - pt x(2to - t) + bt

x(2to - t) - b(2to - t) + 2bto.

Therefore,

q = a + 2bto = a - 2pto.

On the other hand, for t ~ to we have that the time to - t is given

by (0.8).Then, it foliows that

c:(x(t) - pt) - (x(to) - pto) = A(x,p) dx
x(t)

and since x ( - 00) = - 00 and a = q + p to we finaliy arrive to

{X (to)
a = -q + 2x(to) + l-oo A(x,p) dx.

It remains to prove that x(to) = o(p). Conservation of energy

shows that 2V(x(to)) = p2 and therefore o(p) ~ x(to). On the other hand,

since x(-oo) = -00, we have that o(p) = x(td for some tI ~ to. Again

from (0.6), we conclude that X(tl) = O, which implies that tI = to.

The case p < O and assertion iii) are proven in a similar fashion.

We summarize the above results in the next theorem.

Theorem 2.3 Suppose that (q,p) E D(S).

a) If p2 > 21IVlloo , then

S(q,p) = (q - L: A(x,p) dx , p)

b) If p2 < 211Vllooand p> O , then

r(P)
S(q,p)= (-q+2o(p)+2l_oo A(x,p)dx, -p)

c) If 'l < 211Vllooand p < O , then



37

S(q,p) = (-q + 2.B(p) + 2 (oo A(x,p) dx , -p).
1p(p)

Corollary 2.1 Suppose that (q,p) E D(S).

a) If p2> 211V1l00 ,then S(q,p) = (q,p) - (B'(p), O), where

B(p) = Bv(p) = i:(vP2 - 2V(x) -Ipl) dx

b) If p2 < 211V1l00 ,then S(q,p) = -(q,p) + 2(D'(p) , O), where

(o(p)
D(p) = 1-00 (Jp2-2V(x)-p)dx +po(p), for p>O

and

D(p) = roo(Vp2-2V(x)+p)dx + p.B(p) , forp<O
1p(p)

Proof By conditions (Cl) and (C2), V E LI(R), and therefore,

By the Lebesgue dominated convergence theorem, the derivatives of B(p)

and D(p) exist and a straightforward computation proves the corollary,

Corollary 2.2 Assume that p2 > 211V1l00; then

p 00 1
S(q,p) = (q,p) - -I I( L ak 2k ,O),

p k=1 P

where aI = .e'oo V(x) dx , and ak = 1·3··· (2k - 3) .e'oo(V(x»k dx for

k ~ 2. Moreover, the series converges uniformly in any neighborhood of

p = 00.

Proof It follows byexpanding V1- 2V/p2 - p/lpl in a power series of l/p

in a neighborhood of p = 00.

2.3 THE DlRECT PROBLEM IN THREE DIMENSIONS

In this section we will construct the operator S for the three. .
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dimensional conservative, radial case.

The radial case takes place when the potential F(x) = -V'V(x)

in (0.5) depends only on the distance of the particle to the origin; in other

words, if we denote by r = [z], x E R"; .Newton's equation (0.5) becomes

_ V'(r)
x= -V'V(r) = ---x

r
(0.9)

Let us introduce the following notation: r = Ixl, x E R3, p(t) =
x(t) , J/\ = x /\ p (cross-product], J = IJ/\I and x· p (inner product). It

is well known that

(0.10)

where o represents the angle between the vectors x and p.

We assume that F(x) = -V;(T)X satisfies conditions (Cl),(C2)

and (C3), so the asymptotic completeness of wave operators is guaranteed

and the scattering operator S can be defined.

In this section we use the notation S(a_, L) = (a+, b+) which

means , by definition of S, that there exists a unique solution x(t) of (0.9)

such that x(t) <"Va_ + bst. at t = -00 and x(t) <"Va+ + b+t at t = +00, or

equivalently,

a) x(t) - b.st converges to c., , as t -> -00. Similar for +00 with a+, b+.

b) p(t) = x'(t) converges to L as t -> -00. Similar for +00 with a+, b+.

Proposition 2.1 : Let x(t) be the solution of (0.9) such that x(t) <"Va_+Lt

and x(t) <"Va+ + b+t. Then

Proof We write J/\(t) as follows:

J/\(t) = (x(t) - b_t) /\ p(t) + t(L /\ p(t))

Therefore it suffices to prove that the limit as t goes to -00 of
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t(L 1\ p(t)) is zero.

By integrating equation (0.9) in the interval J-oo , t Jwe obtain

11 , x(s)
x(t)=p(t)=L+ (-V (r))-( )ds.

-00 r s

Thus, by using (0.10) it is easy to check that there exists a positive

constant K such that

11 ,
IL 1\ p(t)1 ~ K -00 IV (r(s))lds.

Also there exists ITI > O sufficiently large such that Ix(s)1 ~

M [s] for any [s] > ITI. By condition (C3) it foliows that there exist f > O

and R > O such that for ali r > R

IV'(r)1 < 2~"
r

So for ali t with Itl > ITI we obtain that there exists M » O

such that
1

ItllL 1\ p(t)1 ~ M jtF.
The assertion now follows immediately by taking the limit in the

last inequality. Finally the identity c., 1\ L = a+ 1\ b+ is obvious.

The energy of system (0.9) is given by

(0.11)

which is constant with respect to time and since V (r) goes to zero as t goes

to ±oo we have that
ILI2 Ib+12

E= -2-= -2-'

Also it follows directly from r2 = x . x that r(t)

ordinary differential equation

Ix(t)1 satisfies the

(f)2 + rT = 2(E - vr-» - r V'(r). (0.12)

This last equation enables us to prove the following results about the behavior

of r.
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Proposition 2.2 li reto) = Ofor some to E]-OO, oo[ then r(to+s) = r(to-s)

for any s s]- 00, +00[.

Proof Since J"(t) is non zero and constant we have that r(t) is bounded

below. Also r satisfies the non singular differential equation (0.12). Consider

r(t) = r(2to - t). It is easy to see that r(t) is solution of (0.12) with initial

conditions feto) = - reto) = O and feto) = reto). Therefore by uniqueness we

obtain r(t) = r(2to - t) for any t , and so t = to is a symmetry axis for r.

Corollary 2.3 Consider ro = reto) with reto) = O. Then

a) to is unique

b) r( t) is decreasing on ] - 00, to[

c) r(t) is increasing on lto, +00[.

The results up to now allow us to conclude that the trajectory x(t)

takes place on the plane IIwhich contains the origin (it is clear that b: E II

and J" . b: = O) and with normal in the direction of J" = c.; /\ L. Moreover

there exists a unique point x(to) on the trajectory x(t) which rninirnizes the

distance to the origino

It only remains to compute the time t = to where such point is

attained. The followinglemma, which is easy to prove, gives us the exact

value of such time.

Lemma 2.3 Assume x(t) rv a+ + b+t at t = +00 and x(t) rv c., + b_t at

t = -00. Then:

lim (r(t) _ Ibtl)= _a_ . L
t_-oo Ibl

a+' b+
lim (r(t) -Iblt) = --I 1-

t-+oo b

Proposition 2.3 Let to be the critical point of r(t) ; that is reto) = O.

Then
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c., . i: ro 1+00
( 1 1 )

to = -1b=I2 - iD - ro J2(E _ V) _ J2r-2 - iD dr

Proof Solving equation (0.11) for Ipl and replacing it in (0.10) we obtain,

by Corollary 2.3, that

(0.13)

Let us integrate the last identity with ro = r(to).

L(I) dr
-r-.7:::=~==::;;'==;;' = to - t.

ro J2(E - V) - J2r-2

Rewriting the last equality as

L(I) ( Ib_1 )r(t) - ILJltl- ro - ILlto = 1- J dr
r(lo) 2(E - V) - J2r-2

(0.14)

and applying Lemma 2.3 as t goes to -00 we get the corresponding formula

for to, concluding the proof.

The next proposition deals with another parameter called the

"angle of impact" , which is the angle between the asymptotic Iines L+ :

a+ + b+t and L_ : c., + bst, Let us denote such angle by Q.

Proposition 2.4 Let ro = r(to) be the critica! value of r(t) and denote by

Bo the angle between x(to) and the vector L . Then Q = 1f - 2Bo and

Bo is given by

1+00J dr
Bo = .

ro r2 J2(E - V) - J2r 2

Proof Let us denote by B (t) the angle between x (to) and x (t). By elemenrary

geometric considerations we easily arrive to

x(t + E)· x(t) = r(t + E)r(t) cos(B(t + E) - B(t))

1
= 2 [r2(t + E) + r2(t) - Ix(t + E) - x(t)J2].

By the mean value theorem one has
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2r(t + E)r(t) = (cos(é(:~ E)- 1) = (r(t + E~- r(t)) 2 _ (X(t + E!- X(t}) 2

By letting E go to zero and since B ( -00) = O and x (t) '" c., + Lt

at t = -00 we obtain

1to1";.2 ·2
B(to) = -00:;: Ixl - (r) dto ..

Since a = 'Ir - 2Bowe finish the proof by recalling the identities

(0.10) and (0.13).

Theorem 2.4 Let x(t) be a solution of (0.9) having scattered conditions

x(t) '" a+ + b+t at t = +00 and x(t) '" a_ + Lt at t = -00 , and let

V be a central, radial potential with gradient V'V satisfying conditions

(C1), (C2) and (C3). Then the scattering operator S is defined by

with

b+ = ILI cos o-õ., + ILI sin oõ, 1\ J"

where a is the angle of impact given by Proposition 2.4 and to is the

critical point of r(t) given by Proposition 2.3.

Proof: By Lemma 2.3 and the identity

r(t) - 1* = r(2to - t) - Ib(2to- t) 1- 2tolbl

it follows at once that

(0.15)

Consider the orthonormal system L, L 1\ J", J",. Since we know

the angle a, b+ becomes
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where v is the vector determined by v = L A J".

Also, there exist scalars J.l and À such that a+ can be expressed

in this system as a+ = J.lL + Àv.

From the relation (0.15) and since J" = a+ A b+, we obtain the

following system:

(

- J.l sin o + Àcos o

Ib_lJ.lcoso + ÀILlsino

which has a solution given by

Ib~IJ

-a_ .L - 2tolb_12

( J sin 4-·L ) b + ( J a·b • )- jb::-j O - lb=T cos O - jb::-jcos O - b_ - SInO V - 2tob+

J • b + J a_·L [ . 1-jb::-jSInO _ jb::-jCOSOV- ~ cos oõ., + SInOV - 2tob+

= - (2to + ,;;)) b+ - iP (JsinoL - cos o íõ., A J»
ending the proof of the theorem.

3 INVERSE PROBLEM

The inverse problem consists of recovering some properties of the

potential V (x) from the knowledge of the scattering operator S. We provide

a complete answer for dimension one. One can also obtain similar results

for dimension n = 3, at least in the case where V is radial. We denote the

operator S for the equation (0.5) by Sv.

3.1 THE INVERSE PROBLEM IN DIMENSION ONE

In this secr.on we consider the problem of building up the po-

tential V from the corresponding scattering operator Sv : The next result
/.'

shows that some próperties of V are determined from Sv(p) for large energies

p.
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Theorem 3.1 Let V and W be two potentials verifying conditions (C1),

(C2), (C3) and suppose that Sv = Sw .Then

a) IIVI/oo = I/WI/oo.

b) For any interval I not containing zero,

m{ x / V(x) E I } = m{ x / W(x) E I }
•.

where m denotes the Lebesgue measure supported on R.

Proof The first part is a direct consequence of Theorem 2.3.

On the other hand, Corollary 2.2 implies that

is satisfied for any positive integer n. Therefore for any polynomial P we

have that

J:V(x)P(V(x» dx = i:W(x)P(W(x» dx .

Since the closures of the ranges of V and W are compact, we conclude by

the Weierstrass theorem that the last identity is also valid if one replace the

polynomial P by any continuous function f defined on the closure of the

range of V which coincides with the corresponding closure of the range of

W.

Let I be an interval such that O r{:.I and let f(x) = : XI(X)

,where XI denotes the characteristic function of I. Approximating f by -

continuous functions we obtain statement b).

Remarks

1) If V(x) = W(x+h) for all x E R, then Sv(p) = Sw(p) for p

large. However, for p2 < 211V1loo andp > O, wehavethat O<v(p) = O<w(p)-h

so that Sv(q,p) = Sw(q,p) - (2h,O). Thus, if Sv = Sw then Vis not a

translate of W .

Also, by considering p small and applying Theorem 3.1 we have
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that the scattering operator determines the sets V(E+) and V(E_).

2) The scattering operator can be defined for a class of potentials

much larger than those satisfying the conditions given in section 2.1. In fact,

even potentials withsingularities are allowed.

Example

Let VÃ = À Ixl-n ,where n > 1 and À is a positive constant.

One can prove that the scattering operator SÃ exists. Moreover, for any

p > O and q E R we have that,

t:(-q + 2C1'Ã(p)+ 2 -00 A(x,p) dx , -p)
00 sn/2

-(q,p) + 2C1'Ã(p) (1 + Á (1- (sn _ 1)1/2) ds , O),

where we have made the change of variable x = SCI'Ã(p) and we have written

SÃ(q,p)

Cl'Ã for Cl'v~ .

Now is clear that for n = 2 , the last integral is -1 and therefore

one gets SÃ(q,p) = -(q,p) , for all À. In other words, the potentials

VÃ = À Ix 1-2 ,with À E R , all have the same scattering operator.

On the other hand ,"for n > 2 it is easy to see that

where Cn is a positive constant. Since Cl'Ã depends explicitly on À we

conclude the scattering operators are diferent for distinct À/s.

Because of the above example, for the inverse problem, we need

to impose a decaying condition stronger than (C1).

(C'I) There exist C > O and e > O, such that for all x E R

C
lV(x)1 ~ 1+ IxI2+<

We now use Abel's transform to recover the potential V from the

scattering operator in any interval ]-00, xo[ where V is strictly increasing.
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Let us write 81(p) = D'(p) in Corollary 2.1(b) for p small and

positive. The next theorem gives the explicit formula for Vasa function of

Theorem 3.2 Let V be a potential satisfying (C'l),(C2) and (C3). Then

-I() 1J: 81(&)V y = - dE,
7r o JE(Y - E)

for any y with O< y < V (x) , where x is the smallest critical point of

V.

Proof Taking the new variable E = p2/2, we have that

V-1(E) VE
81(v2E) = V-I(E) + 1 (J - 1) dx,

-00 E - V(x)

for any E < 11V1l00.

Let E = V(x). Since V is strictly increasing in ]-oo,x[, by

putting a = V-I we obtain for O< E < E the following identity

81(&) = V-I(E) + (E( 1 __ 1_) a'(s) ds.
VE VE Jo ..,!E-s VE

By using Fubini's theorem, we have that

fY 81(&) dE -
Jo 'JE~(~y=-=E~) - !oy, lY 1 1 1a (s) ~(~ - r;::;) dE ds

O 8 vy-E vE-s vE

!oy a(E)
+ ./ dE,

O yE(y-E)

for any y, O < y < E. Since the inner integral in the right hand side has

value two, by integration by parts one gets

J: 81(&) .. «r:J dE = 7ra(y) - 2hma(h)arcsm(Vh/y).
o E(y - E) h-O

By hypothesis, la(s)l2+' ~ C, for s small. Therefore, the above limit is

equal to zero.

Above theorem allows us to recover from the scattering operator

8, through an explicit formula, the potential V (x), up to the first local

maximum of V(x). For example, if the potential has only one maximum,
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then it can be recovered completely. On the other hand, in [1], the authors

provide an explicit example of two potentia!s V(x), W(x) whose scattering

operators S; and Sw coincide. So, S does not give relevant information

between others critical points of V.
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