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1 INTRODUCTION

In the study of many phenomena in the physical world, one is
interested in describing the long time behavior of certain observables. That
is the case, for example, of the principles that govern the radar, the sonar
and the dispersion of light waves.

Scattering Theory de;a.ls with the long time behavior of evolutions
systems that are subject to interactions. One of the main problem consists
in studying this behavior, knowing in advance the corresponding interaction.
On the other hands, in practice, it is probably more interesting the so called
inverse problem , which consists of determining the nature of the interaction
from the knowledge of some observations made in the long time scale. This
is clear in the examples just mentioned above.

Furthermore, Scattering Theory was principally developed for un-
derstanding the laws and principles present in Quantum Mechanics. Several
quantum experiments can be described in the context of scattering theory,
since the interaction one expects to describe is inaccessible, not because it

is distant; like in the case of radar, but because it is to small, usually the
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size of atoms and molecules. Also from the mathematical point of view, the
development of scattering theory has been successfully achieved because of
the advances on Operator Theory in the last decades.

The Schrodinger equation describes the evolutions in Quantum

Mechanics. It can be written in an abstract context as

i— = H 0.1
‘ot ke 0L

where H represents an operator acting in some Hilbert space H which is a self-
adjoint perturbation of a free self-adjoint operator Hy. The usual example is
Hy = —A, the spatial laplacian in R" and H = —A + V, for some function

V which acts by multiplication in the Hilbert space LZ(R").

The corresponding evolution equation in classical mechanics is
Newton’s equation
d’z

F - F(:L‘,t), z €R" (02)

which describes the movement of a particle in R with position z under the
influence of a force field F(z,t).

These notes are an attempt to show the main ideas and some
techniques used in Scattering Theory, avoiding the complexity of quantum
mechanics and its mathematical formalism. We shall do it by working di-
rectly with the classical Newton’s equation, and we will show that these ideas
became fruitful and interesting also in this classical framework.

From the point of view scattering theory, the study of the long
time behavior of the solutions of equation (0.2) is achieved by comparing it
with the solutions of certain free equation. It is natural to consider as free
equation the one where there are no forces acting on the particle, that is,
F=0.

In others words, we shall compare the asymptotical behavior of
the solutions of (0.2) with the corresponding behavior of the solutions of the

free equation Z = 0 , when t goes to infinity.
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1.1 PRELIMINARIES AND NOTATIONS

Under adequate conditions on the force F(r.t). the equations
(0.2) has a unique global solution with given initial position iu ty. r(ty) = a
and initial velocity x’(¢9) = b. We denote this unique solution as x(t.ty:a.b)
and we simply write r(#;a.b) when to = 0. We remark that we have simplitied
the form of Newton equation by choosing adequate physical units.

For example, the solution of the free equation # = 0, with initial
conditions z(ty) = a, z'(tg) = b, it is given by z(¢,tp;a.b) = a + b(t — to).

It is common to describe the movement of a classical particle
using the concept of state. With the above notation the initial state is the
pair (a.b) and the state at the time ¢ is (x(#;a.b),x'(t:a,b)). The collection
of all states is called the phase space .

In chapter 2 we introduce the concepts of this theory and we
discuss the direct problem in dimension n = 1 and n = 3. Finally, in Chapter

3 we face up the corresponding inverse problem.

2 DIRECT PROBLEM

We denote by £ the phase space R" x R" and we call X the

subset of ¥ of states with nonzero velocity, that is:
o= {(z,y) €T / y #0}.

Definition 1 The wave operators Wy are functions defined on %o by

Wi(g,p) = (22.y2) if and only if

tgin'x lz(t; £, y+) — (g +pt)|| =0

Jim #(t;74,ys) = p

In other words, the solutions z(t; z+, y+) of (0.2) with initial data
(z+,y+) behave as the solution g + pt of the free equation & = 0, as t

approaches +oc .
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Definition 2 We say that the wave operators Wy for system (0.2) are asymp-
totically complete if Ran W_ = Ran W, where Ran WV denote the image of

the transformations Wi.

According to this definition, if the wave operators W are com-
plete then for a given state (r,.y;) € Ran W, = Ran W_ there exist states

(g.p). (a,b) € o, such that

Wi(a,b) = (x4,y+) = W_(a.p)

Therefore, if the wave operators are asymptotically complete we can define

the following map,

Definition 3 The scattering operator S is defined as
S=w;w_

Its domain D(S) is a subset of ¥y which differs from X, by a set
of Lebesgue measure zero, see [8] for details.
In other words, S(g,p) = (a,b) if and only if there exists a unique

solution x(t) of the equation (0.2) satisfying

Jim #(t) =p . lim (z(t) - pt) =g (0.3)
and
tginx.i(t) =b, IEgnx(z(t) — bt) = a. (0.4)

That is, the perturbed trajectory z(t) is asymptotic to g+ pt ,
as t approaches —oo and z(t) is asymptotic to a + bt as t approaches to
+oc. We denote (0.3) and (0.4) shortly as z(t) ~ ¢ + pt and z(t) ~ a + bt
respectively.

Throughout this notes we shall assume that V(z) > 0.
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2.1 AUTONOMOUS CASE
The autonomous case corresponds to a trajectory () in R" of a
classical particle which it is governed by the Newton’s equation
¥= F(x) (0.5)
where the force F acting ou the particle depends only on the position of it.
We shall deal with the conservative case, that is, we assume that there exists

a continuous differentiable potential V (2) such that V(z) — 0 as |[|z| — o

and F(r) = -V V(x).

Under this force F the system (0.5) is conservative, in other

words, the-energy E of a solution x(t) of the equation (0.5)
1. ’
E = @) + V(=(2)) (0.6)

is constant on time. which can be directly proved by showing that the deriva-
tive with respect to t of E is zero.
Throughout these notes we shall assume that the potential F =

—VV (x) satisfies the following conditions:

C1 There exist ¢ > 0 and € > 0 such that for all r € R",

C
(LA Jfer ff R0

I1F ()] <
C2 F(x) is locally Lipschitz and continuous in R”"
C3 There exist >0, C > 0 and é > 0 such that
IF(@) ~ F@)I < izl — ul

for all z, y verifying |lz|| . |ly|| > r .

The hypothesis (C1) and (C2) assure the existence and uniqueness

of global solutions of equation (0.5) with prescribed initial conditions z(ty) =

q , z(to) = p.



32

The proof of the next result can be found in [8], and it assures

the asymptotic completeness of waves operators for system (0.5).

Theorem 2.1 If F = —V satisfies conditions (C1),(C2) and (C3) then W,

and W_ exist and they are complete, that is, Ran W, = Ran W_.

We mention that similar result about existence has been studied
in [3] for the non autonomous case (0.2). Also, a Hilbert space aproaching
has been discussed in [2]. Also [4],[5],[6], [7] and [8]are important references

about this subject.

2.2 THE DIRECT PROBLEM IN DIMENSION ONE

Now we will find an explicit formula for S in dimension n = 1, for
the autonomous case generated by equation (0.5), that is, F(z) = —V'(z).

Let us begin with the following result,

Lemma 2.1 Assume that (¢,p) € D(S) and S(q,p) = (a.b).
a) Ifp?>2|V| then b=p
b) If p? < 2|Vl then b= —p.

Proof Since V(x) converges to zero as |z| approaches infinity, we get from
the energy identity (0.6) that 2E = b = p?. Assume that p? > 2||V|w
and p > 0. Suppose that b = —p, then it is clear that z(—o0) = —oo and
r(400) = —oo. Therefore, there exists ¢ty € R such that #(¢p) = 0, which
contradicts (0.6). A similar argument is applied to the case p < 0 . Thus
proving statement a).

Assume now that p? < 2|V, and p > 0. If b= p, then
z(—00) = —o0 and z(+00) = 400 .Therefore , there exists ¢y € R such that
V(z(to)) = ||Vl - Again from conservation of energy (0.6) , we obtain that
(#(t0))? + 2||V || = p* which contradicts our assumption. The case p < 0 is

treated in a similar way.
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Let us define the following sets, which will play an important role

in the characterization of the domain of the scattering operator S .

E_ {z € R/ V'(z) =0and V(z)< V(y),for ally < z}

E; {zeR/V'(z)=0and V(z)< V(y),foraly >z}

That is, E_ ( E; ) consists of the local maxima of V (z) which can be seen
when one looks from —oo (+oc ). Clearly both V(E_) and V(E,) are

measurable sets with Lebesgue measure zero.

-~

Theorem 2.2(Characterization of the domain of S )
a) Let p>0 . Then (g,p) € D(S) if and only if p?/2 ¢ V(E_)
b) Let p<0 . Then (g,p) € D(S) if and only if p*/2 ¢ V(E,) .
In particular, the set £y — D(S) has Lebesgue measure zero.

Proof Assume that (g¢,p) € D(S) and p > 0 .We may assume that p? <
2||V ||oo- Set (a,b) = S(g,p) and let =z(t) be the solution of equation (0.5)
which is asymptotic to ¢ + pt as t — —oo and asymptotic to a + bt as
t — +o00.

By Lemma 2.1 ,we have that b = —p and therefore 2(—o0) = —oc
and z(400) = —oo. Hence, there exiéts t; € R such that z(¢;) = 0.

If xo € E_ is such that p? = 2V (z¢) then from (0.6) we conclude
that V(z(t;)) = V(o) and therefore z(t;) > z(t). Since z(—00) = —oo
, there exists t2 € R such that z(t) = z¢ . Hence V(z(t2)) = V(zo).
By (0.6) we conclude that z(t;) = 0 . Finally, by uniqueness of the initial
value problem for equation (0.5), we have that z(t) = zo for all ¢, which is
a contradiction.

In order to prove the reciprocal, let us take p be a positive con-
stant such that p?/2 ¢ V(E_). Set (z,y) = W_(g,p) and z(t) = z(t;z,y).
Suppose first that p? > 2|V, . Then, by conservation of energy, we have

that



(())* = p* = 2V (2(1)) 2 P* = 2|V ||,

which shows that z(t) is unbounded as t converges to +o0o . By the argument
given in [6],rhis is enough to conclude that (z,y) € W, and so (g,p) € D(S).

‘Now,let us consider the case p? < 2|V |« and let z¢ € E_ be
the smallest point in this set such that p? < 2V(zo) . Then, there exists
z) < 7z verifying p? = 2V(z;) . Clearly we have that V’(z;) > 0 and
V(y) < V(zji), forall y < z,.

We claim that there exists ¢; € R such that z(t;) = z;. Suppose
that this is false.

Since z(—o0) = —oc we would have that z(t) < z; , for all
t € R. Hence V(x(t)) < V(x}) , for all t+ € RBy conservation of energy, we
have that z(¢t) #0,forallt € R .

Since #(—o0) > 0, it follows that z(t) is a strictly increasing
function of ¢ and therefore x(oc) = lim;_.;.z(t) exists, z(oc) = 0 and
r(—20) =0 and z(oc) < z;. It follows that = = z; and therefore #(oc) =
—V'(z;) < 0, which contradicts the fact that z(oc) = 0, thus proving our
claim. :

From (0.6) we have that #(¢;) = 0. By uniqueness of the solution
for (0.5) with given initial data, we deduce that z(t; —t) = z(¢; +1t) , for all
t € R .This shows that (z,y) € Ran W, and so (¢,p) € D(S). A similar
argument proves b).

Let us denote, for p* > 2V (z), A(z,p) = Ay(z,p) the expression

A(z,p) = ﬁ - %. (0.7)

Also, we write for p? < 2|V«

a(p) =av(p) = inf{z € R /p* =2V ()} if p>0,

B(p) =Bv(p) = inf{x € R /p*=2V(2)} if p<0O.

Now, with the notation just introduced we state the following
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result, which gives the formula for the first component of S.
Lemma 2.2 Let (¢,p) € D(S) and (a,b) = S(g,p).

i) If p>> ||[V|ls then
+o0
a——-q—/_w A(z,p) dz

ii) If p> <2|V|x and p >0 then

a=—qg+2a(p)+2 /_ao(:)A(x,p) dx
iii) If p? < 2|V|o and p <0 then

00
a=—q+28(p) +2 a()D)A(::;,p) dz.

Proof We first prove i).

Let us assume that p? > 2||V || and p > 0 (the case p < 0 can
be treated in a similar way). Then z(t) # 0 for all ¢t and since #(—o00) >0
we have that z(t) > 0, for all £. By solving equation (0.6) and integrating

in [to, t] we obtain that

z(t) dx
t—tg= ——— f
0= [ e (0.8)

This last identity implies the following relation:

—(z(t) — bt) + (z(to) — pto) = —z(t) + z(to) + b(t — to)
i A(z,p) dz ,

z(to)
which proves assertion i) by taking t — oo and tg — —o0 .
Let us prove ii).
Suppose that p? < 2||V || and p > 0. By Lemma 2.1, z(—o0) =
—00
z(00) = —00 ,2(—00) = p > 0 and z(oc0) = —p < 0. Hence, there exists

to € R such that z(¢p) = 0 and, as in the proof of Theorem 2.2, it follows
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that z(t9 —t) = z(to +t) , for all t € R. In particular , such %o is the unique

critical point of z(t). By symmetry, we can write

z(t) —pt = z(2tp—t) + bt

z(2tp — t) — b(2tp — t) + 2bto.

Therefore,

g = a + 2btg = a — 2pty.

On the other hand, for ¢ < t; we have that the time ty — ¢ is given

by (0.8).Then, it follows that

(2(t) = pt) = (zlto) — pto) = [[" A(z.p) da

and since z(—o0) = —oo and a = g + p to we finally arrive to
z(to)
a=—q +21:(t0) <+ ./—oo A(:z:,p) dzx.

It remains to prove that z(tp) = a(p). Conservation of energy
shows that 2V (z(to)) = p* and therefore a(p) < z(tp). On the other hand,

since z(—o0) = —oo, we have that a(p) = z(¢;) for some t; < t5. Again

from (0.6), we conclude that #(¢;) = 0, which implies that t; = to.
The case p < 0 and assertion iii) are proven in a similar fashion.

We summarize the above results in the next theorem.
Theorem 2.3 Suppose that (g,p) € D(S).
a) If p? > 2||V| , then

S(q,p) = (g - /_O:OA(z,p) dz , p)

b) If p? < 2||V|lx and p >0, then

S(a,p) = (~a+2a(p) +2 [ A(z,p) dz , p)

c) If p? < 2|V and p <0, then
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o0
S(g,p) = (—q +28(p) + 2/1,@) A(z,p) dz , —p).
Corollary 2.1 Suppose that (g,p) € D(S).

a) If p? > 2||V|| , then S(q,p) = (g,p) — (B'(p),0), where

B(p) = Bv(p) = [ _(V© — 2V(z) - Ip]) da
b) If p* <2||V|lw , then S(g,p) = —(g,p) +2(D'(p) , 0), where

D)= [P~ 2V() ) dz +pa(p). for p>0
and

D)= [ (/¥ =2V(z) +p) dz +pB(p). for p<0
Proof By conditions (C1) and (C2), V € L!(R), and therefore,
/::(\/pQ -2V (z) - |p|) dz < % /_o; V(z) dz < oo.

By the Lebesgue dominated convergence theorem, the derivatives of B(p)

and D(p) exist and a straightforward computation proves the corollary.
Corollary 2.2 Assume that p? > 2||V||; then

S(a.p) = (@.) = ( i % p% 0),

where a; = 2 V(z)dr ,and o = 1-3---(2k — 3) /2, (V(z))* dz for
k > 2. Moreover, the series converges uniformly in any neighborhood of

p = 00.

Proof It follows by expanding /1 — 2V/p% — p/|p| in a power series of 1/p

in a neighborhood of » = oc.

2.3 THE DIRECT PROBLEM IN THREE DIMENSIONS

In this section we will construct the operator S for the three



38

dimensional conservative, radial case.

The radial case takes place when the potential F(z) = —VV(z)
in (0.5) depends only on the distance of the particle to the origin; in other
words, if we denote by r = |z|,z € R", Newton’s equation (0.5) becomes

Vi(r)

Z=-VV(r)=- z (0.9)

Let us introduce the following notation: r = |z|, = € R?, p(t) =
z(t) , J*==z Ap (cross\product), J = |J"| and z-p (inner product). It

is well known that
7?2 = PlpPsin’ a = r¥(|pf® - (7)) = [z[Plpff =z - p (0.10)

where o represents the angle between the vectors x and p.

We assume that F(z) = #@x satisfies conditions (C1),(C2)
and (C3), so the asymptotic completeness of wave operators is guaranteed
and the scattering operator S can be defined.

In this section we use the notation S(a_,b_) = (ay,b;) which
means , by definition of S, that there exists a unique solution z(t) of (0.9)
such that z(t) ~a_+b_t at t = —oco and z(t) ~ a; + byt at t = 400, or

equivalently,
a) z(t) — b_t converges to a_, as t — —oc. Similar for +o0c0 with a,by.

b) p(t) = z'(t) converges to b_ as t — —oo. Similar for +oc with a,by.

Proposition 2.1 : Let x(t) be the solution of (0.9) such that z(t) ~ a_+b_t

and z(t) ~ a; + byt. Then
JY= lim J(t)=a_ Ab_=a; Aby.

t——o00

Proof We write J”(t) as follows:
) = (2(2) = b-t) A p(t) + (b A p(2))

Therefore it suffices to prove that the limit as ¢ goes to —oo of
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t(b_ A p(t)) is zero.

By integrating equation (0.9) in the interval |—oco , ¢ ] we obtain

z(s)
r(s)

Thus, by using (0.10) it is easy to check that there exists a positive

ds.

i) =pt) =b_+ [_(-V'(+))

constant K such that

jb- AP < K [ [V'(+(s))lds.

Also there exists |T'| > 0 sufficiently large such that |z(s)| >
M |s| for any |s| > |T'|. By condition (C3) it follows that there exist ¢ > 0
and R > 0 such that for all » > R

1
V() S e

So for all ¢ with |t| > |T| we obtain that there exists M > 0
such that

1
[t|[o- Ap(t)] < M e

The assertion now follows immediately by taking the limit in the
last inequality. Finally the identity a_ A b_ = a A b, is obvious.

The energy of system (0.9) is given by
L oo
E= §|p| +V(r) (0.11)

which is constant with respect to time and since V(r) goes to zero as t goes

to +oo we have that
ol P

2 2
Also it follows directly from r? = z -z that r(t) = |z(t)| satisfies the

E

ordinary differential equation
(PP +ri=2(E - V(r)) —rV'(r). (0.12)

This last equation enables us to prove the following results about the behavior

of r.
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Proposition 2.2 If 7(ty) = 0 for some tg €] —o0, oo[ then r(tp+s) = r(tp—s)

for any s €] — 0o, +o0l.

Proof Since J”(t) is non zero and constant we have that r(t) is bounded
below. Also r satisfies the non singular differential equation (0.12). Consider
7(t) = r(2to — t). It is easy to see that 7(t) is solution of (0.12) with initial
conditions 7(tg) = — 7(to) = 0 and 7(¢9) = r(tp). Therefore by uniqueness we

obtain r(t) = (2t — t) for any t , and so t = t¢ is a symmetry axis for r.
Corollary 2.3 Consider rg = r(t9) with r(t9) = 0. Then

a) to is unique

b) r(t) is decreasing on ] — oo, to[

c) r(t) is increasing on ]tg, +00].

The results up to now allow us to conclude that the trajectory z(t)
takes place on the plane II which contains the origin (it is clear that b_ € II
and J” -b_ = 0) and with normal in the direction of J" = a_ A b_. Moreover
there exists a unique point z(¢p) on the trajectory z(¢) which minimizes the
distance to the origin.

It only remains to compute the time t = tp where such point is
attained. The following lemma, which is easy to prove, gives us the exact

value of such time.

Lemma 2.3 Assume z(t) ~ ay + byt at t = +o0o and z(t) ~ a_ + b_t at

t = —oo. Then:

Jim (r(t) — Jot|) = _a-ll;lb_
lim bl — 0+ b
Jim (r(8) - lolt) = -

Proposition 2.3 Let tg be the critical point of r(t) ; that is 7(t) = 0.
Then
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¢ e 0 /+°° 1 1 d

= —-—  — — _— r
TR TRl e 2BV - o

Proof Solving equation (0.11) for [p| and replacing it in (0.10) we obtain,
by Corollary 2.3, that

Ht) = —2(E — V) — J2r-2 (0.13)

Let us integrate the last identity with rp = r(tp).

dr

)
=tg—1t.
/r: RE-V)—22 "
Rewriting the last equality as
r(t) ||
t) — |b_||t| —ro — |b_|to = 1- s
@ bl =raooto= [0 (1- b e (09

and applying Lemma 2.3 as t goes to —oo we get the corresponding formula
for tp, concluding the proof.

The next proposition deals with another parameter called the
"angle of impact” , which is the angle between the asymptotic lines L, :
ay+bstand L_:a_+b_t. Let us denote such angle by a.

Proposition 2.4 Let ro = r(tp) be the critical value of r(t) and denote by
6y the angle between z(t9) and the vector _ . Then a = — 26y and

8y is given by

+oo J dr
=], 2 R(E-V)- Pr?

Proof Let us denote by 6(t) the angle between z(¢p) and z(t). By elementary

geometric considerations we easily arrive to
z(t+€)-z(t) = r(t + €)r(t) cos(8(t +€) — 6(t))

- % [FP(t+€) +7(2) — le(t +¢) — =() 7]

By the mean value theorem one has
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2r(t + )r(t) = (cos(é(g €) - 1) _ (r(t s ) - r(t))2 - (:c(t & ) — x‘(t)_)?

By letting € go to zero and since 8§ (—oo) = 0 and z(t) ~ a_+b_t

at t = —oo we obtain

B(to) = t° 1\/ e (7)o,

Since o = 7™ — 26y we finish the proof by recalling the identities
(0.10) and (0.13).

Theorem 2.4 Let z(t) be a solution of (0.9) having scattered conditions
z(t) ~ay +bit at t=+oo and z(t) ~a_+b_t at t = —co, and let
V be a central, radial potential with gradient VV satisfying conditions
(C1), (C2) and (C3). Then the scattering operator S is defined by

S(a-,b-) = (ay,b4)

with

_-b_ 1
a+=_<2t0+a )b+— T (|7|sinab_ — cosa(b_ A J™))

lb_[2
by = |b_|cosab_ + |b_|sinab_ A J"

where o is the angle of impact given by Proposition 2.4 and t is the

critical point of r(t) given by Proposition 2.3.
Proof: By Lemma 2.3 and the identity
r(t) — |blt = r(2to — t) — |b(2to — t)| — 2t0[b]
it follows at once that
ay-by = —a_-b_ — 2tg|b_|2. (0.15)

Consider the orthonormal system b_,b_ A J*, J",. Since we know

the angle «, b, becomes

by = |b_|cosab_ + |b_|sinav



43

where v is the vector determined by v = b_ A JA.

Also, there exist scalars x and A such that ay; can be expressed
in this system as a; = pb_ + Av.

From the relation (0.15) and since J" = a, A by, we obtain the

following system:

—psina + A cosa = m]

|b_|pcosa + Alb_|sina —a_-b_ — 2t|b_|?

which has a solution given by

— J o a_-b_ J a_b_ .
a -_ = SI. T o — = manr .
+ ( ] Sl — == cos a) b_ + (Ib-l cos a 5 Sina ) v — 2tgby

= —IbJ—_lsinab_ + IT'J-—I cos av — % [cosab_ + sinav] — 2tgb,
= (2t0 + lb—';f) by — ln (Jsinab_ — cosa(b_ A J))

ending the proof of the theorem.

3 INVERSE PROBLEM

The inverse problem consists of recovering some properties of the
potential V(z) from the knowledge of the scattering operator S. We provide
a complete answer for dimension one. One can also obtain similar results
for dimension n = 3, at least in the case where V is radial. We denote the

operator S for the equation (0.5) by Sy.

3.1 THE INVERSE PROBLEM IN DIMENSION ONE

In this sect.on we consider the problem of building up the po-
tential V from the corresponding scattering operator Sy . The next result

shows that some properties of V' are determined from Sy (p) for large energies

P -
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Theorem 3.1 Let V and W be two potentials verifying conditions (C1),
(C2), (C3) and suppose that Sy = Sy .Then

a) [V]ieo = [IWl|oo-
b) For any interval I not containing zero,
m{z/V(z)el}=m{z/W()eIl}
where m denotes the Lebesgue measure supported on R.

Proof The first part is a direct consequence of Theorem 2.3.

On the other hand, Corollary 2.2 implies that

L ve) dz = [T (W) dz

is satisfied for any positive integer n. Therefore for any polynomial P we
have that
o0 o0
/_m V(z)P(V(z)) dz = /_oo W (z)P(W (z)) dz .

Since the closures of the ranges of V and W are compact, we conclude by
the Weierstrass theorem that the last identity is also valid’ if one replace the
polynomial P by any continuous function f defined on the closure of the
range of V which coincides with the corresponding closure of the range of
w.

Let I be an interval such that 0 ¢ I and let f(z) = 1 x,(z)
, where x; denotes the characteristic function of I. Approximating f by

continuous functions we obtain statement b).
Remarks

1)If V(z) =W(z+h)forall z € R, then Sy(p) = Sw(p) for p
large. However, for p? < 2|V ||« and p > 0, we have that ay(p) = aw(p)—h
so that Sy(g,p) = Sw(qg,p) — (2h,0). Thus, if Sy = Sw then V is not a
translate of W .

Also, by considering p small and applying Theorem 3.1 we have



45

that the scattering operator determines the sets V(E,) and V(E.).
2) The scattering operator can be defined for a class of 'potentials
much larger than those satisfying the conditions given in section 2.1. In fact,

even potentials with singularities are allowed.
Example

Let Vi, = A |z|™ , where n > 1 and A\ is a positive constant.
One can prove that the scattering operator S, exists. Moreover, for any

p > 0and g € R we have that,

Sx(q,p)

I

ax(p)
(~a+203(0) +2 [ A(z,p) dz , —p)

8n/2

_(q,P) +2QA(P) (1 4 /1'00(1 - —(ST-—IT/j) ds N 0),

where we have made the change of variable z = sa,(p) and we have written

) for ay, .

Now is clear that for n = 2, the last integral is —1 and therefore
one gets S\(g,p) = —(g,p) , for all A In other words, the potentials
Vy = A|z|72 , with A € R, all have the same scattering operator.

On the other hand ,for n > 2 it is easy to see that

SA(Qsp) - _(qs.p).+ 20’/\(1’) (Cn ) 0)

where C, is a positive constant. Since «, depends explicitly on A we
conclude the scattering operators are diferent for distinct A’s.
Because of the above example, for the inverse problem, we need

to impose a decaying condition stronger than (C1).

(C’1) There exist C > 0 and e > 0, such that for all =z € R
C
<<
V) < o ppw
We now use Abel’s transform to recover the potential V from the

scattering operator in any interval ]—oo,zo[ where V is strictly increasing.
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Let us write S;(p) = D'(p) in Corollary 2.1(b) for p small and
positive. The next theorem gives the explicit formula for V as a function of

B

Theorem 3.2 Let V be a potential satisfying (C’1),(C2) and (C3). Then
1 /? _S1(V2E) )
VE(y -
for any y with 0 < y < V() , where 7 is the smallest critical point of

V.

Proof Taking the new variable E = p?/2, we have that
1(E) vVE
S1(V2E I(B) + —— — 1) da,
(V2B) =VY(E) + [ o=y ~N4

forany E < |V -

Let E = V(7). Since V is strictly increasing in ]—o0,Z[ , by
putting o = V™! we obtain for 0 < E < E the following identity
51(V2E “(E)
28 B ) '(s) ds.
vVE \/——— \/_
By using Fubini’s theorem, we have that

fy 51(V2E) / ( / 1
VEG-B) V7

/ a(E
AURS

for any y, 0 < y < E. Since the inner mtegral in the right hand side has

—=) dE ds

value two, by integration by parts one gets

/y\/%(?@dE— a(y) —Qllma(h ar081n(\/i7)

By hypothesis, |a(s)[**¢ < C, for s small. Therefore, the above limit is
equal to zero.

' Above theorem allows us to recover from the scattering operator
S, through an explicit formula, the potential V(z), up to the first local

maximum of V(z). For example, if the potential has only one maximum,
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then it can be recovered completely. On the other hand, in [1], the authors
provide an explicit example of two potentials V (z), W (z) whose scattering
operators S, and Sy coincide. So, S does not give relevant information

between others critical points of V.
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