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ABSTRACT

In this paper it was numerically simulated an air stream perpendicularly incident upon

a valley in order to determine the influence of the Froude and the Rossby numbers in the pattern of

the flow. The main of this study is to search under what range of these parameters the air stream

will be channeled in the valley. Theoretical considerations shows that the channeling occur if the

values of these numbers are limited in one region in the space defined by these parameters.

RESUMO

este artigo simula-se numericamente um escoamento atmosférico que incide

perpendicularmente sobre um vale. O objetivo do presente trabalho é determinar a influência dos

números de Froude e de Rossby sobre o padrão ondulatório resultante bem como o intervalo destes

parâmetros que possibilitam a canalização do escoamento. Considerações teoricas permitem inferir .

que tal canalização restringe-se a uma certa região do espaço de fase criado por estes parâmetros.

• Supported in part by Conselho Nacional de Desenvolvimento Cientifico e Tecnologico
(CNPq), Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS) and
Comissão de Aperfeiçoamento do Pessoal de Ensino Superior ( CAPES).
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I. INTRODUCTION

The character of air flow over valleys and mountains depends on the measure of the

stratification and on the horizontal and vertical scales of the orographic features, or more precisely

on the Froude number and on the Rossby number defined respectively as U / Nh and U / jL, where

U is the speed ofthe oncoming flow, N is the Brunt- Vaisala frequency, f is the Coriolis parameter

and h and L are the height and width ofthe orography.

For flow over small-scale orographic features at large Rossby number (of order ten

or more), the earth's rotation has little etTect, and the theory of the resulting wind field pattem can

be simplified by ignoring the rotation altogether. At the opposite end of the spectrum, flow over

extensive orographic areas at small Rossby numbers, simplification is achieved by utilizing the quasi-

geostrophic character of the flow. In the middle part of the spectrum the flow in this range of the

Rossby number is strongly atTected by the earth's rotation, but is not quasi-geostrophic. Therefore

neither of the simplifications mentioned above ar,e applicable. For Ro oc 1 studies suggest that both

the geostrophic and ageostrophic signals should be evident in the flow response. Stratified flow past

an obstacle for F, oc 0.1- O.5 is also not covered by existing theories (Smolarkiewikz and Rotunno

1988). Linear gravity-wave theories are formally valid when F,» 1 while potential flow-type

theory is valid when F, «I .

Recourse to simple theoretical models to provide further understanding of these flow

phenomena in the RoxF, space of parameters is hampered by the inevitable non-linearity in some

part of this space. Thus numerical nonlinear models is the way to gain access to the dynamics of the

flow and to simulated linear and nonlinear aspects of the flow

In the present numerical work we study specifically the relationship between the flow

along the valley axis and the Froude and Rossby numbers. In other words we examine for what

range of these parameters we will obtain the channeling etTect when the geostrophic wind is

perpendicular to the flow. In this investigation we utilize a system of equations governing

hydrostatic flow of an inviscid, incompressible, rotating, density stratified fluid in the isosteric

coordinates.

Much of the early ideas and conceptual models of valley winds was rooted in the

Defant's scheme (1951) which is a concise overview of c1assical field work in the A1ps. His scheme

depicting the sequence of upslope and dowslope winds and íts importance in driven the along-valley

wind. He indicated that this flow along the valley axis were a nonlinear, three-dimensional

phenomenon depended upon the three-dimensionality of the valley and intimately related to the side
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wall slope flows and radiative and turbulent exchange processes. Such complexity precluded the

application ofthe analytic mathematical tools available at the time. However in the past two decades

considerable progress has been made concerning numerical models partly due to the development of

computer capacity and numerical modeling techniques which allow to simulate three-dimensional

motions in a much more realistic way. The work of Egger (1981) did examine flow along the valley

axis and it address the descriptive ideas of Defant concerning the development of along-valley flow.

McNider and Pielke (1984) utilized a hydrostatic, primitive equation model 10 examine specifically

the development of the secondary along-valley axis flow in well defined valleys.

More recently Adrian and Fiedler (1991) used the non-hydrostatic Karlruhe

Atmospheric Mesoscale Model 10 simulate unstationary wind and temperature fields over complex

terrain and particularly the surface wind field in the Rhine valley. On the other hand lhe successful

theoretical explanation of the channeling is that Wippermann (1984) which determines the wind

direction in lhe valley depending on the direction of lhe geostrophic wind. Dergeiner and Dreiseitl

(I987) also explain up- and down valley winds as a result of apressure contrast between plain and

valley. This pressure contrast arises from a horizontal lemperature gradient which reverses sign

twice daily.

In this present work we are not so much interested in the relationship between the

slope flow and lhe axial flow. The main poinl which is investigated is the influence of the buoyancy

and lhe Coriolis forces in driving the along-valley axis wind. The importance of these forces arises in

two natural scales: first, a length scale, the distance of downwind drift during a buoyancy oscillation

and second, a time scale, the transition time of an air parcel to cross the valley (= L / U). The first

one, when compared with lhe height of the valley, gives an idea of how much one partic\e will be

deflected vertically while it cross the valley. This comparison is expressed by the Froude Number.

The second one, when compared with the Coriolis paramrter, gives an idea of the relative

importance of fluid accelerations relative to those associated with lhe Earth's rotation. This

comparison is expressed by the Rossby number.

In ali of our numerical experiments we consider situations arnong four well-defined

limits. With large Froude and Rossby numbers the pressure field is nearly hydrostatic and lhe

Coriolis Force can be neglected. With small Froude and Rossby numbers the flow is c\osely

analogous to the irrotational (i.e. potential) and the assumption of geostrophic balance is valid. We

also study situations with large Rossby and small Froude numbers and vice versa.
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2. THEMODEL

The problem under consideration is to determine, for a straight and perpendicular to

the valley flow, the development of the along-valley axis flow caused by the prescribed corrugations

ofthe underlying ground surface and the stratification ofthe oncoming f1ow.

The starting point of our analysis is the set of equations governing hydrostatic flow of

an inviscid, incompressible, density stratified f1uid on the rotating earth. In an isosteric coordinales

system these equations take the form
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where a = p-I is the specific-volume coordinate of the model, p is the pressure, M = a.p + g.h is

the Montgomery potential with h and g denoting the actual height of a density surface and lhe

acceleration of gravity, respectively. The subscripl a on lhe derivatives denote differentiation at

constant o; In the presenl study 11and I' are lhe velocities in x and y directions respectively. We
..

assume that far upstrearn of lhe valley the flow consists of a uniform zonal currenl of velocity U

with uniform stratification given by constant Brunt-Vaisala frequency N .The valley extended in lhe

y-direction and is defined by

h(x) = H( 1-(1 +(x/ I.)')' ') (5)

The objective of lhe calculation is to determine steady state patterns in relation 10 lhe

wind profiles of lhe air current. This is done by computing lhe evolution of lhe motion in lime,

starting frorn a chosen initial state, until no longer changes be noticeably. The underlying assumption

is that the final steady state does not depend on the initial condition, but only on the boundary

conditions. The initial condition is thus immaterial, provided that it does not lead to wind field

breaking during lhe transient stage, which might cause the numerical integration to break down.

An understanding of the physical basis of the phenomenon of the channeling is of

utmost importance. Several key questions emerge: under what range of atmospheric stability and for

what range ofheight and width ofthe valley does the channeling occur? What role does lhe Coriolis

force play in this case?

o
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Smith (1979) indicates that non linearity is coupled with the phenomena of wave

steeping and breaking, and additionally with blocking. Blocked or stagnant air masses below the

crest height of a valley may occur, if the Froude-number drops below a certain critical value. We

investigate when the stagnation occur, i.e. under what limit of F, we have 1/ = 0, where 1/ is the

transversal velocity to the valley. In this case the Coriolis force begins to play the outmost important

factor to the channeling of the flow.

Fitzjarrald and LaIa (1989) proposes when there is a significant along-valley pressure

gradient (strong cross-valley geostrophic wind component), the effect of the valley sidewalls is to

produce a small cross-valley pressure gradient that opposes the Coriolis force. The Coriolis

acceleration then might plausibly be balanced by cross-valley pressure gradients induced by a tilt in

the thickness of a cooler, denser layer near the surface.

lntuitively, we would expect low-Ievel dense air to be blocked by a sufficiently high

valley, provided the air is not moving too swiftly. In this case, inside the valley, the kinetic energy

must be only due to " velocity, where " is the parallel velocity to the axis valley.

3. NUMERICAL ASPECTS

The numerical model used in this study was developed by Smolarkiewicz (1991) (for

further details see Smolarkiewicz and Clark 1986). The model is a finite-difference approximation

and it is an extension of schemes refereed in meteorological literature as Crowley-type schemes. The

extension here refereed is in the sense that the scheme inc\uded arbitrary forcing and/or source

terms.

ln the horizontal ali variables are defined at the same grid-point positions; in the a.

direction the velocity field and Montgomery potential are staggered with respect to the pressure .•

The temporal discretization is documented in Smolarkiewicz (1991) and uses the nonlinear

MPDAT A scheme for the advection terms involved in the equations. This MPDA TA scheme

compensates the forcing error term which is a consequence of discarding them in the derivation of

the Crowley-type schemes. Another property of the MPDA TAis that bounds the total energy which

is necessary for the nonlinear stability of the system.

The spatial staggering is achieved by averaging the velocity variable between the two

adjacent grid points, whereas the temporal staggering employs the extrapolation of the velocities

from 1/- 1 and /I temporal levels. ln order to prevent spurious accelerations due to pressure forces
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from zero-thickness layers the horizontal derivative of the Montgomery potential is approximated

with the second-order-accurate pressure-thickness-weighted average of the one-sided derivatives.

The time-step advancement of the discrete equations proceeds in three stages. First,

the advective Courant numbers, and the transported variables, are defined using primary variables

11, v and p at appropriate temporal and spatial levels; and the advection of the variables is solved

using MPDATA algorithm. Second, the new values of pressure are recovered from the updated

pressure thickness, and the hydrostatic relationship provides new values of the Montgornery

potential. Third, having available the new values of the pressure thickness and Montgomery

potentials, the forcing terms in the momentum equation are incorporated using the arithmetic

averages from the old and new time levels. Finally, the updated velocity field is recovered from the

momentum variable.

In order to simulate an infinite extend of the tluid a gravity-wave absorber is

employed in the upper portion of the model; and the symmetric boundary conditions are

incorporated at the lateral boundaries. The computational domain cover 25 points in both horizontal

directions with igual grid spacing. In the vertical direction we use 13 points with igual grid spacing.

o

/.

4. RESUL T AND DISCUSSION

We wish to focus on the way the pattern of the tlow depends on Ro and F"

particularly the pattern of the flow inside the valley. For this analyze a serie of numerical

experiments was simulated. These experiments was carried for a large variety ofvalues of Ro and F,.

The fundamental parameters that define these numbers enters through the physical characteristics of

the valley (its height h and its widht L) as well its geographic position (f), and through the initial

state of the atmosphere, i.e. through the Brunt- Vaisala frequency (N) and the far upstrearn flow

speed (U). Thus the numerical integration of equations (1)-(4) were carried until the wave fields

were nearly stationary throughout the region of integration.

The results of lhe numerical integration, for one particular experiment, are shown in

figures (1)-(3). This experiment run with the following parameters: U= 8 m/s, N = 0.04s-l,

h = 6OOm, L = 30Km, andf = 1.263 x 10-· s 1 that corresponds a valley located at 60 degrees of

latitude north. With these parameters the corespondents Froude and Rossby numbers are equal to

0.33 and 2.11 respectively.

The time step used was óT= 10 s and the horizontal grid spacing was óX = óY = 5

Km. After 540 time steps ofintegration the results do not change in significative manner, indicating
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that the flow was stationary to a good approximation
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Figure 1. Sketch of the vertical structure of the.cc surfaces at the center plane for F; = 0.33 anc

Ro = 2.11 The steady state was obtained after 540 steps of integration.

In figure 1 we display the structure of the u surfaces in a vertical cross section

through the center plane. This figure shows the propagating-wave pattern with an intrinsic

frequency less than the Brunt- Vaisala frequency. In this case internal gravity waves are possible.

These waves propagate vertically and the disturbance decay upward. The phase lines tild forward

into the mean wind and, as poited by Smith, is connected with the propagation of energy vertically

away frorn the topography that produces the wave.
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Figure 2. Steady state streamlines at the lower surface for F; = 0.33 and Ro = 2.11
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In figure 2 we display the streamlines at the lower surface. In this figure we observe

the channelling effect. As a consequence of equations 1-4 the wind follows the a surface, i.e. there

are no vertical interactions among the grid points; the wind penetrates the valley and for some

physical reason it is accelerates in the axis direction. The strongest 11 -component occurs before the

valley center line. Then it decreases and near the valley center line it reaches the zero value. After

the center valley its value is negative. In other words the 1/ velocity increase before the axis of the

valley, decrease (reaching negative values) and increase again. The increase in the wind speed in the

left side of the valley and its decreasing in the right side is an especially interesting facet of the

mode!. We observe 11 = O in two lines. The first one is located near the center valley axis and is

related with a convergence zone. The second one is located near the exit of the valley and is related

with a divergence zone. The first region of /I = O is the mathematical condition for the channeling

when the outgoing flow is perpendicular to the valley. This region is also related with the stagnation

point.

o.

-6·_~6-.~--~--~~--~0~.~W-~--~--~-"6 .
• /L

Figure 3. Plan view ofvelocity field at the lower surface for F; = 0.33 and Ro = 2.11

In particular we can analyze the potential vorticity conservation. The numerical

scheme employed (without the friction terms) does not yield a rigorous potential vorticity

conservation. Indeed, preliminary integrations with the mo deI showed that little changes of finite

difference approximations to the potential vorticity may occur within the inviscid part of the fluid;

these are just truncation erros, but we observe that the model and the scheme employed given a

trends to the conservation. When the flow coming from the west and encounter a north-south valley

the potential vorticity requires that lhe flow must acquire a cyclone curvature to the north. This is

because IIp becomes greater in absolute value as the air is stretch over the valley. As IIp retums to
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lhe original value in lhe lee of the valley lhe flow will curve back toward the south. We can observe

in figure 2 this behavior in the streamlines pattem.

Figure 3 shows a vector plot of the model flow field at the same levei as in the figure

2. As can be seen, the flow near the surface moves down the valley sidewalls, converge in the center

and flows out the valley.
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Figure 4. The same as Figure 2 for F,. = 133 and Ro = 10.25 The steady state was also obtained

after 540 steps of integration

Figure 4 illustrates the structure ofthe streamlines for F, = 1.33 and Ro = 10.52.This

experiment run for the same valley parameters and for the same flow speed but here we assume the

Brunt-Vaisala frequency N=O.OI and the Coriolis parameter f = 2.53xl0 '05 I The steady state

solution is obtained with the same time of integration, i.e 540 time steps. In this experiment there is

no forrnation of a low-level blocked region inside the valley, i.e. the 11 velocity is greater than zero

everywhere. As a consequence there are no observance of the onset of the secondary flow. When

the Froude and Rossby numbers increases the role played by the buoyancy and ~he Coriolis force

decrease. The increase of the Froude number is associated with the decrease of the Brunt- Vaisala

frequency or the increase of the speed f1ow. In this situation there will be vertical rnotion and the

f1uid particles will deflected vertically following the terrain (this behavior is well know in a flow over

a mountain). Particularly if the Froude number is greater than 1 the intrinsic frequency of the

motions is greater than the buoyancy frequency and internal gravity waves are difficult to occur. We

can observe this in figure 5 where we display the CI. surfaces, in a vertical cross section through the

center plane, for the same experirnent. We can compare figures 1 and 5 with the figure 1 of Smith

(1979) who iIIustrates the steady inviscid flow over two-dimensional topography for a little or no
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influence ofbuoyancy (our figure 5) and for strong influence ofbuoyancy elfects (our figure 1). On

the other hand the increase of the Rossby number is associated with the increase of the speed flow,

or the proximity of the Ecuador (decrease oflatitude), or for valleys of small width. In alI cases the

time that a particle takes to cross the valley is small when compared with the characteristic time

associated with the Coriolis force, and this force can be neglected. The importance of this term, in

the momentum equations, for the a1ong-valley wind is showed in figure 6. Here we display an

experiment which runs for the same parameters used in experiment showed in figures 1-3 but

without the Coriolis terms. In this case the streamlines at lower surface is symmetric and there are

no evidence ofthe channeling ofthe flow.
z/H

2. r-----~
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Figure 5. The same as Figure I for F,. = 1.33 and R; = 10.25

The form nature of the solutions presented later enable us to search by the region in

parameter space (F,. x Ro ) where the channeling occur. In essence the flow enter the valley and the

blocking occur for some critical value of F,. . But the channeling is not a result of this parameter

only. Once the blocking is verified the Coriolis force begins to play its role in the resulting flow field.

The effect of this force, associated with the influence of the Buoyancy force will determine the

dynamics of air flows over a valley. The parameter space is then divided in two regions. For some

part of this space the axial flow field will be observed and for the other part there will be no axial

flow. We expected, for example, that for R; -t 00, i.e. flow without Coriolis force, the channeling

will be not observed for any value of F,. . In the other extreme of the Ro axis, i.e. Ro -t 00 or tlow

with Coriolis term » advection terms, the channeling will occur for F,. lower than a critical value.

To search this critical value as well the curve that divide the para meter space in two regions a great

number of numerical experiments was done. When the result tlow field was similar those described

in figures 1-3 we get a point in the channeled region. When the result is similar those described by
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figures 4-5 we get a point in the no channeled region. To look the transition from one side to other

side we proceed as follow. We fixed the Rossby number and allow the Froude number to sweep an

interval between 0.1 < F, < 2. O. this procedure allows us to discover the transition point and as a

consequence to draw the desired curve, which is presented in figure 7. The area below this curve is

the channeled region.

:

o.

-
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-6, o, 6,

x/L

Figure 6, The steady state streamlines at the lower surface for F,. = 0.33 and R; = 2.11 (the same

values as Figure 2) but without the Coriolis terms in the momentum equations.

From this figure we observe that the critical Froude number for the channeling

depends on the Rossby number. The maximum critical value is about 0.41, i.e. for the maximum

influence of the Coriolis force numerically simulated (Ro:X: 0,2) the axial flow develops when

F,. < 0.41. For greater values of Ro the critical Froude number decreases. When Ro :x:20. O, for

example, F,., cc0.32, Between these values of R; (0.2 < R; < 20,0) the F,., has a little variation

(0.41 < F,. < O,32), but when Ro is greater than 20.0 the F,., goes quickly to zero.

There is one important observation to be made. The critical Froude number observed for the

channeling is different from that observed for the stagnation. This second one is greater than the first

one. Intuitively we expected to observe this fact. The tendency for the breaking and stagnation of

lhe surface levei flow comes before of the incoming flow acquires kinetic energy in the axial

direction. Once the stagnation occurs there are two ways for the onset of the channeling, i.e

decreasing the Rossby number or decreasing the Froude number.
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O. I 1.0 10.0 100.0
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Figure 7. Sketch ofthe channeled and no-channeled regions in the space of'pararneters. In lhe region

below the fullline the wind parallel 10 lhe axis of lhe valley is observed

5 CONCLUSIONS

In this paper it was numerically simulated an air strearn perpendicularly incident upon

a valley in order to determine lhe influence of lhe Froude and lhe Rossby nurnbers in lhe pattern of

the flow. Particularly attention was focused under what range of these pararneters this air stream

will be channeled in lhe valley. The results shows that lhe channeling occur if lhe values of these

numbers are limited in one region in lhe space defined by thern. For R; ~ 0, i.e. for lhe maximum

influence of lhe Coriolis force, lhe channeling is observed for F, :s:0.41. When the R; increase the

value of the F, decrease. In other words, when lhe Coriolis force becomes smaller more strong

stable stratification is required for the channeling of lhe wind in a valley. However for Ro ~ 50

(weak influence of the Coriolis force) lhe incident air stream will not be channeled for any value of

F,. ln this case the winds follows the topography.

The channeling here obtained are expected in very narrow and deep valleys as well in

extremely broad and flat valleys, however as it was neglected lhe friction lhe results here obtained

are expected only for broad valleys and dubious for narrow valleys.
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