PADRONIZAÇÃO DE FONTES DE NEUTRONS PELO MÉTODO DE ATIVAÇÃO DE UM BANHO DE SULFATO DE MANGANÊS

Luiz Alexandre Schuch Departamento de Física. Centro de Ciências Naturais e Exatas. UFSM. Santa Maria, RS. Dagmar Carneiro da Cunha Reis Comissão Nacional de Energia Nuclear. Rio de Janeiro, RJ.

RESUMO

Padronizou-se diversas fontes de neutrons, Am-Be, pelo Mé todo de Ativação de um Banho de Sulfato de Manganês. As fontes, CO locadas no interior de recipientes cilíndricos, foram imersas no centro de tanques esféricos de 50 cm e 100 cm de diâmetros, respec tivamente banhos circulante e estático, contendo uma solução con centrada de sulfato de manganês em água. Para a medida da taxa de emissão de neutrons, além da taxa de contagens gama, eficiência do banho e fração do número total de neutrons térmicos absorvidos pelo manganês, considerou-se fatores relacionados com as reações rápidas com o oxigênio e enxofre, fração de neutrons absorvidos pela própria fonte e revestimento e fuga de neutrons da solução. Os valores obti dos pelos métodos, forneceram uma boa correspondência com os valo res fornecidos pelo fabricante de tais fontes.

SUMMARY

SCHUC, L.A. and REIS, D.C.C., 1985. Calibration of Neutron Sources by the Activation of a Manganese Sulphate Bath Method. Ciência e Natura, 7:7-18.

Several Am-Be sources were calibrated using the manganese sulphate bath method. The sources were encapsulated in cilindrical recipients, and submerged in the center of spherical tanks with a concentrate solution of manganese sulphate in water. The measurements were made in a circulating bath using a 50 cm diameter tank and in a static bath using a 100 cm diameter tank. The neutron emmission rates were computed using the measured gamma emmision rates, bath efficiency and the fraction of the total number of thermal neutrons absorbed by the manganese. Effects due to fast reactions with oxigen and sulfur, self-absorption and neutron leakage were also considered. The results obtained by the method are in good agreement with the values furnished by the manufacturer.

INTRODUÇÃO

Fontes de neutrons são utilizadas em Laboratórios de Cal<u>i</u> bração como padrões para medidas de fluência, calibração de detetores

e medidas de seções de choque.

Na padronização de uma fonte de neutrons, um método muito empregado baseia-se na reação ${}^{55}\text{Mn}(n,\gamma){}^{56}\text{Mn}$ para a medida de sua fluência. A ativação do ${}^{55}\text{Mn}$, contido numa solução de sulfato de manganês de concentração e geometria convenientemente escolhidas (1,7), permite obter o número de neutrons emitidos por unidade de tempo, através da medida da atividade gama do ${}^{56}\text{Mn}$.

Determina-se também a sensibilidade do banho e diversos f<u>a</u> tores de correção que, juntamente com a atividade do manganês irr<u>a</u> diado, permitem o calculo do valor absoluto da taxa de emissão de neutrons.

O METODO DO BANHO DE SULFATO DE MANGANÊS

A fonte é imersa no centro de um tanque esférico contendo uma solução concentrada de sulfato de manganês em água. Os neutrons são moderados pelos átomos de hidrogênio e capturados por núcleos de manganês, hidrogênio e enxofre ao atingir a faixa térmica. Uma desvantagem do método é o grande volume de solução necessário para minimizar a fuga de neutrons. Na escolha das dimensões do tanque co<u>n</u> sidera-se que sua sensibilidade é inversamente proporcional ao vol<u>u</u> me da solução.

Supondo que todos os neutrons emitidos sejam termalizados e absorvidos na solução, a fração do número total de neutrons térmi cos absorvidos pelo manganês é dada pela equação,

$$F = \frac{N_{Mn} \sigma_{Mn}}{N_{Mn} \sigma_{Mn} + N_{S} \sigma_{S} + N_{H} \sigma_{H}}$$

ou

$$F = \frac{1}{1 + \frac{N_{S} \sigma_{S}}{N_{Mn} \sigma_{Mn}} + \frac{N_{H} \sigma_{H}}{N_{Mn} \sigma_{Mn}}}$$
[1]

onde,

N_{Mn}, N_S e N_H e o número de atomos de manganês, enxofre e hidrog<u>ê</u> nio, respectivamente, por centimetro cúbico de sol<u>u</u> ção e,

 σ_{Mn} , $\sigma_{S} \in \sigma_{H}$ são as seções de choque de absorção térmica do mang<u>a</u> nês, enxofre e hidrogênio, respectivamente.

Devido a seção de choque de absorção térmica do oxigênio ser da ordem de 0,265 mb, correspondendo somente à absorção de 0,04% dos neutrons, ele não é considerado no cálculo da fração de neutrons térmicos absorvidos pelo manganês.

Apõs um período longo de irradiação, ao ser atingida a saturação, o número de átomos de ⁵⁶Mn que desaparecem por decaime<u>n</u> to beta torna-se igual ao número de átomos de ⁵⁶Mn que estão sendo gerados na reação.

 $55_{Mn} + \frac{1}{0}n \rightarrow \frac{56}{Mn} + \gamma$

Supondo-se que os neutrons emitidos pela fonte são total mente absorvidos pela solução, a taxa de emissão de neutrons seria calculada por:

$$Q = \frac{A}{\varepsilon F}$$
[2]

onde, A é a taxa de contagem de saturação e ε é a eficiência do b<u>a</u>nho.

A existência de ressonâncias na seção de choque do mang<u>a</u> nês faz com que a seção de choque de absorção efetiva seja maior que a seção de choque de absorção térmica. Deste modo, σ_{Mn} é substitu<u>í</u> do por (1+a) σ_{Mn}.

Considera-se que durante o processo de moderação, uma fr<u>a</u>ção de neutrons (Fator P_f) e absorvido por reações rápidas dos t<u>i</u>pos (n,p) e (n, α) com oxigênio e enxofre. Deve-se considerar, ai<u>n</u>da, a perda de neutrons que são absorvidos pela própria fonte e seu revestimento (Fator P_a) e, a fuga de neutrons da solução (Fator P_e).

Incluindo-se os fatores de correção na equação [2] obtém-se:

$$Q = P_{f} P_{a} P_{e} \frac{A}{\varepsilon} \left(1 + \frac{N_{S} \sigma_{S}}{N_{Mn}(1+a)\sigma_{Mn}} + \frac{N_{H} \sigma_{H}}{N_{Mn}(1+a)\sigma_{Mn}}\right)$$
[3]

ou

$$Q = \frac{A}{\varepsilon} \frac{K}{F}$$

onde $K = P_f \cdot P_a \cdot P_e$.

Em casos da solução conter impurezas absorvedoras de neu trons, deve-se considerar o termo $\Sigma N_i \sigma_i / N_{Mn} (1+a) \sigma_{Mn}$, onde $\Sigma N_i \sigma_i \in a$ soma das seções de choque macroscópicas dessas impurezas.

DETERMINAÇÃO DA ATIVIDADE DO BANHO

No sistema de Padronização de Fontes de Neutrons do Inst<u>i</u> tuto de Radioproteção e Dosimetria (IRD), a atividade total do b<u>a</u> nho pode ser determinada de dois modos: banho circulante e banho e<u>s</u> tático.

BANHO CIRCULANTE

A fonte é colocada num recipiente cilíndrico de acrílico e imersa no centro de um tanque esférico de 50cm de diâmetro. Emprega-se um sistema de deteção completamente separado(3),

9

[4]

que consiste de um detetor de cintilação que possui um cristal de 3" x 3" de NaI (Tl) associado a seu tubo fotomultiplicador. O cri<u>s</u> tal está acoplado numa cavidade de um vaso cilíndrico o qual contém cerca de 5,73 litros de solução. Todo o sistema está contido num ca<u>s</u> telo de chumbo de lOcm de espessura. conforme a figura (1).

Figura 1 - Esquema do sistema de ativação de um banho circulante de sulfato de manganês, para medida de intensidade de fontes de neutrons.

Bombeia-se continuamente a solução através do sistema de deteção. Os volumes do tanque (68,50 %) e de todo o sistema (76,29 %), juntamente com a velocidade de circulação da solução (7,59 %/min)são medidos.

A fonte é colocada em sua posição e começa-se imediatame<u>n</u> te a medida da ativação. O intervalo entre o início de duas cont<u>a</u> gens sucessivas foi estipulado em 15 minutos com contagens de 400 segundos cada.

Quando se obtém um número de contagens suficientes para que a atividade de saturação possa ser calculada dentro da precisão estatística requerida, a fonte é removida.

Nas mesmas condições anteriores, acompanha-se o decaimento do ${}^{56}\text{Mn}$ durante um tempo suficiente que permita novamente a de terminação da atividade de saturação.

De acordo com tal procedimento, são feitas contagens durante irradiação, com a fonte imersa no tanque e, durante

o decaimento da solução, com a fonte removida. Tais contagens são extrapoladas para a atividade de saturação. BANHO ESTÁTICO

O recipiente cilíndrico, com a fonte no seu interior, é imerso no centro do tanque esférico de 100cm de diâmetro.

Após um periodo de irradiação muito grande (~ 25 horas),qua<u>n</u> do se atinge uma atividade próxima da atividade de saturação, a fo<u>n</u> te é removida e introduz-se um detetor cintilador que possui um cri<u>s</u> tal de 3" x 3" de NaI (Tl) associado a seu tubo fotomultiplicador. A solução é homogeinizada, por meio de uma bomba, durante 90 minutos quando então são feitas contagens (2) seguindo o mesmo procedimento do banho circulante.

PROCESSAMENTO DOS DADOS

O formalismo utilizado para os banhos estático e circula<u>n</u> te \bar{e} o mesmo, quando são feitas contagens com a fonte removida(3).

A taxa de contagem, corrigida para a saturação em cada uma das contagens individuais é obtida por meio de dois programas comp<u>u</u> tacionais para o crescimento e o decaimento de atividade e sendo elaborados respectivamente a partir das duas equações abaixo,

$$A_{ij} = \frac{X_1 C_{ij} \exp(\lambda_s T_{is})}{X_2 \exp(-\lambda_m'' T_{ij}) + X_3 \exp(-\lambda_s T_{ij})}$$
[5]

е,

$$A_{ij} = \frac{C_{ij} \exp(\lambda_s T_{is}) \exp(\lambda_m T_{ij})(\lambda_m - \lambda_s)}{\lambda_m g(\lambda_m \zeta_c) [\exp(-\lambda_s T_i) - \exp(-\lambda_m T_i)]}$$
[6]

onde X_1 , X_2 , X_3 e g(x) são constantes iguais a,

$$X_{1} = \left(\frac{\lambda_{m}^{"} - \lambda_{s}}{\lambda_{m}}\right) \left[\frac{V_{T}}{V} \exp\left(\lambda_{m} \zeta_{p}/2\right) + \frac{V_{c}}{V} \exp\left(-\lambda_{m} \zeta_{p}/2\right)\right]$$

$$X_{2} = \left\{\left[1 + \left(V_{c}/V_{T}\right) \exp\left(-\lambda_{m} \zeta_{p}\right)\right] \left(\frac{\lambda_{m}^{"} - \lambda_{s}}{\lambda_{m}' - \lambda_{s}}\right) \left[\exp\left(-\lambda_{s} \zeta_{p}\right) - \exp\left(-\lambda_{m}' \zeta_{p}\right)\right] - \exp\left(-\lambda_{s} \zeta_{p}\right)\right\} \exp\left(3\lambda_{m}^{"} \zeta_{p}/2\right) g\left(\lambda_{m}^{"} \zeta_{c}\right)$$

$$X_{3} = \exp\left(\lambda_{s} \zeta_{p}/2\right) g\left(\lambda_{s} \zeta_{c}\right),$$

$$g(x) = \left[1 - \exp\left(-x\right)\right] / x,$$
e sendo

14		S
۷.	-	Volume total do sistema
V _T	-	Volume do tanque
V _c	-	Volume externo ao tanque
λ_{m}	-	Constante de decaimento do ⁵⁶ Mn
λs	-	Constante de decaimento da fonte de neutrons
ζp	-	Tempo de circulação da solução, sendo igual ao volume exter no ao tanque dividido pela vazão da bomba
ζc	-	Duração do período de contagem
T _{ij}	-	Tempo de irradiação até o início da contagem j, com a fonte sendo colocada ou retirada do tanque no tempo zero
C _{ij}	-	Taxa de contagem medida em $\boldsymbol{\zeta}_{\rm C}$ após correções para tempo morto e radiação de fundo
A _{Bi}	-	Taxa de contagem da radiação de fundo para a concentração i
Τ _{is}	ī	Intervalo entre a introdução da fonte no tanque e o tempo de referência ao qual a fonte é efetivamente calibrada
T _i	-	Tempo que a fonte permanece no tanque
A _{ij}	-	Valor da atividade de saturação obtida para a contagem j

Na obtenção da equação [5], supõe-se que a atividade é m<u>e</u> dida num tempo médio $\zeta_p/2$ depois da solução deixar o tanque e que esta é totalmente removida, devendo-se considerar o decaimento de atividade do ⁵⁶Mn no trânsito entre o tanque e o sistema de deteção.

Assim,

$$\lambda_{m}' = \lambda_{m} + V_{c}/V_{T} \zeta_{p}$$

$$\lambda_{m}'' = \frac{\lambda_{m} + (V_{c}/V_{T} \zeta_{p}) \left[1 - \exp(-\lambda_{m} \zeta_{p})\right]}{1 + (V_{c}/V_{T}) \exp(-\lambda_{m} \zeta_{p})}$$

A figura (2), mostra um esquema da ativação e decaimento do $^{56}\rm{Mn},$ ilustrando os diversos tempos envolvidos nos cálculos.

Para o caso particular de uma fonte de Am-Be, a constante de decaimento da fonte de neutrons pode ser desprezada em função da constante de decaimento da solução sendo respectivamente $\lambda_s = 2,87880.10^{-9}$ minuto⁻¹ e $\lambda_m = 0,44814.10^{-2}$ minuto⁻¹, podendo simplificar as expressives sões [5] e [6].

Desde que foram obtidos valores de atividade de saturação praticamente constantes para uma dada irradiação, pode-se concluir que as constantes de decaimento, o tempo morto, a radiação de fundo e as correções para o tempo de decaimento nos tubos foram aplicados corretamente, não existindo impurezas presentes cuja atividade seja significante.

Figura 2 - Esquema da ativação e decaimento de um banho circulante de sulfato de manganês com os diversos tempos envolvidos nos cãlculos da atividade de saturação.

DETERMINAÇÃO DA EFICIÊNCIA DO BANHO

Alíquotas de solução de sulfato de manganês foram irradi<u>a</u> das no Reator Argonauta do Instituto de Engenharia Nuclear durante 10 minutos num fluxo de 10^9 n cm⁻²s⁻¹. Cinco pequenas fontes desta solução foram preparadas segundo o procedimento de Axton e Cross(7) e padronizadas pelo Método de Coincidência 4IIβ-γ. Ao mesmo tempo uma quantidade apropriada da mesma solução foi jogada no tanque e hom<u>o</u> geneizada ao circular através do sistema de deteção.

Para obter a eficiência ε , a taxa de contagem média corr<u>i</u> gida para o tempo morto e efeitos de radiação de fundo é dividida pela atividade da solução padronizada pelo Método de Coincidência $4\Pi\beta-\gamma$

Assim,

$$\varepsilon = \frac{A_b}{A_a}$$

[7]

onde, ε e a eficiência do banho

 $A_b \in a$ taxa de contagem do banho e $A_a \in a$ atividade absoluta da solução.

CALCULO DOS FATORES DE CORREÇÃO

A medida de concentração do banho em gramas de MnSO₄ por litro de solução, foi determinada pelo Método Gravimétrico.

O fator de correção devido a presença de ressonâncias na seção de choque do manganês foi calculado pela seguinte expressão (2,8):

$$a = (33 \frac{N_{Mn}}{N_{H}} + 0.8)\%$$

O fator de correção K para as diversas fontes, em banhos de raios e concentrações determinadas (9), é calculado por meio de interpolações logarítmicas nos valores da tabela (1).

TABELA 1 - FATORES DE ABSORÇÃO E FUGA DE NEUTRONS PARA DIFERENTES RAIOS E CONCENTRAÇÕES DE MnSO, NO BANHO.

CONC.	RAIO		P	BSO	RÇÃO		FUGA				
(%)	(cm)	Mn Rap.	Mn Int.	Mn Tep.	Н	0	S	(%)			
FONTE: Am-Be											
0	20	0,00	0,00	0,00	65,24	1,17	0,00	33,50			
0	36	0,00	0,00	0,00	92,40	1,36	0,00	6,17			
0	50	0,00	0,00	0,00	97,12	1,37	0,00	1,40			
20	20	0,20	0,83	25,06	42,63	1,21	0,03	30,00			
20	36	0,23	1,01	34,17	58,04	1,37	0,04	5,14			
20	50	0,24	1,03	35,61	60,48	1,41	0,04	1,14			
30	20	0,34	1,49	33,21	33,11	1,31	0,06	30,40			
30	36	0,41	1,85	45,52	45,30	1,52	0,06	5,34			
30	50	0,43	1,91	47,53	47,30	1,55	0,06	1,20			
40	20	0,53	2,30	39,06	25,21	1,41	0,08	31,33			
40	36	0,65	2,91	54,07	34,81	1,67	0,10	5,76			
40	50	0,67	3,03	56,67	36,47	1,72	0,10	1,28			

PRECISÃO DOS RESULTADOS

Foram padronizadas três fontes de Am-Be pelo Método do B<u>a</u>nho Estático e Circulante.

Na análise dos erros foram considerados o erro estatíst<u>i</u> co e o erro sistemático.

ERRO ESTATÍSTICO

No cálculo do erro estatístico considera-se as taxas de contagem de saturação dos banhos para as diferentes fontes de neu trons, na seguinte expressão:

$$\sigma_{1} = \left[\sum_{i=1}^{N} \frac{(n_{i} - \overline{n})^{2}}{N-1} \right]^{1/2}$$

onde,

n_i é a atividade de saturação n é a atividade de saturação média e

N é o número total de medidas.

ERRO SISTEMÁTICO

O erro sistemático sobre o valor da taxa de emissão de neu trons pelas fontes foi considerado igual em ambos os métodos de p<u>a</u> dronização e provém das fontes de erros relacionadas abaixo e sendo calculado por (4)

$$\sigma_2 = (r_c^2 + r_F^2 + r_P^2 + r_{Pf}^2 + r_{Pe}^2 + r_{Pe}^2)^{1/2}$$
[9]

onde

- r_c o erro na medida de concentração devido às impurezas (2%),
- r_F o erro no calculo do fator F na equação [4]devido as imprecisões das seções de choque (0,8%),
- r_{E} o erro na medida da eficiência do banho devido ao sistema $4 \pi \beta \gamma$ (1,5%),
- r_{Pf} o erro no valor de correção devido as reações de ab sorção no oxigênio e no enxofre (0,5%),
- r_{Pa} o erro no valor de correção devido à absorção de neu trons na própria fonte e seu revestimento (0,5%) e
- r_{Pe} o erro no valor de correção devido a fuga de neutrons da solução (0,5%).

O erro no fator F, na equação [4], foi obtido pela expressão abaixo que considera a propagação dos erros provenientes de $\sigma_{\rm Mn}$, $\sigma_{\rm S}$ e $\sigma_{\rm H}$.

$$\varepsilon_{f} = \left[\left(\frac{\partial F}{\partial \sigma_{Mn}} \right)^{2} \varepsilon \sigma_{Mn}^{2} + \left(\frac{\partial F}{\partial \sigma_{S}} \right)^{2} \varepsilon \sigma_{S}^{2} + \left(\frac{\partial F}{\partial \sigma_{H}} \right)^{2} \left(\partial \sigma_{H}^{2} \right)^{1/2} \right]^{1/2}$$

Os valores de seção de choque de absorção térmico do ma<u>n</u> ganês, enxofre e hidrogênio foram considerados (10) como:

> $\sigma_{Mn} = (13, 3 \pm 0, 2) b$ $\sigma_{S} = (0, 52 \pm 0, 02) b$

15

[8]

 $\sigma_{\rm H}$ = (0,332 ± 0,002) b

O número de átomos de manganês, enxofre e hidrogênio por centímetro cúbico de solução e calculado em relação à concentração e densidade (11) de sulfato de manganês da solução. Considerando-se os quocientes da seção de choque com seus respectivos desvios na equação acima obtém-se o erro no fator F como, $r_{\rm F}$ = 0,8%.

O erro na determinação da eficiência do banho foi consid<u>e</u> rado em relação aos desvios observados na medida da atividade esp<u>e</u> cífica da solução e os desvios nos valores da atividade média obt<u>i</u> dos pelo decaimento do banho.

Na determinação da concentração do banho, considerou-se um erro de 2% pois não foi feita uma análise química das impurezas pr<u>e</u> sentes.

Substituíndo-se os respectivos valores dos erros na equ<u>a</u> ção [9], obtém-se

$$\sigma_2 = 2,76\%$$

Deste modo, o desvio total máximo na taxa de emissão de neutrons pela fonte é calculado por,

$$\sigma_{Q} = (\sigma_{1}^{2} + \sigma_{2}^{2})^{1/2}$$
 [10]

sendo,

σ_Q o desvio máximo na taxa de emissão do neutrons pela fonte

σ₁ o erro estatístico

 σ_2 o erro sistemático.

CONCLUSÃO

Os valores da taxa de emissão de neutrons com seus respe<u>c</u> tivos desvios encontram-se na tabela 2.

Observa-se que existe uma boa correspondência entre os r<u>e</u> sultados obtidos pelo Método de Banho de Sulfato de Manganês, impla<u>n</u> tado no Instituto de Radioproteção e Dosimetria, Brasil, com aqu<u>e</u> les fornecidos pelo fabricante de tais fontes.

A fonte de Am-Be de 5 Ci foi considerada como padrão pr<u>i</u> mário, destinado a calibração de monitores de neutrons com moder<u>a</u> dores.

Método	Banho Esta	ātico	Banho Circulante			
Concentração (g/l)	400		400			
Fator a	0,0160		0,0160			
Fator F	0,4976		0,4976			
Eficiência	6,2511	.10 ⁻⁴	9,7561.10 ⁻⁴			
Fontes	Am-Be 5Ci	Am-Be lCi	Am-Be 1Ci	Am-Be 100m Ci		
Fator K	1,0308	1,0301	1,2653	1,2587		
Atividade Saturação (cps)	3,4767.10 ³	7,0822.10 ²	9,1088.10 ²	1,1248.10 ²		
Q (n/s)	1,1521.10 ⁷	2,3454.10 ⁶	2,3740.10 ⁶	2,9163.10 ⁵		
Erro Estatístico (%)	0,35	0,55	0,52	0,74		
Erro Sistemático (%)	2,76	2,76	2,76	2,76		
Q (IRD) (n/s)	1,15.10 ⁷ +2,8%	2,35.10 ⁶ <u>+</u> 2,8%	2,37.10 ⁶ +2,9%	2,92.10 ⁵ +2,9%		
Q (Fabricante) (n/s)	1,14.10 ⁷ +4,0%	2,36.10 ⁶ +2,5%	2,36.10 ⁶ +2,5%	2,8.10 ⁵		

TABELA	2	-	RESULTADOS	DA PADE	RONI	ZAÇÃO	DE	DIFEREN	TES	FONTES	DE	NEU
			TRONS PELO	METODO	DO	BANHO	EST	TATICO E	CIF	RCULANTE		

REFERENCIAS BIBLIOGRAFICAS

- SCHUCH, L.A., Calibração de Monitores de Neutrons com Moderadores e Aplicação na Determinação de Fatores de Calibração de Dos<u>í</u> metros de Albedo, Tese de Mestrado, IME, Rio de Janeiro, (1979).
- LOUWRIER, P.W.F., Calibration of a Radium (α,n) Beryllium Neutron Source, Institute for Nuclear Physics Research (I.K.O.), Amster dam (1966).
- 3. AXTON, E.J., CROSS, P., ROBERTSON, J.C., Calibration of the NPL Standard Ra-Be Photoneutron Source by an Improved Manganese Sulphate Bath Technique, J. of Nucl. Energy, 19, (1965).
- GURFINKEL, Y., AMIEL, S., Absolute Calibration of Neutron Source By Manganese Sulphate Bath Method, Israel Atomic Energy Commission (1963).

5.	ALVES, R.	N.	, REIS,	D.C.L.	, FERNA	NDES, S	.N., The	Use	of a	Small
	MnS04	- [Bath fo	r Calib	ration	of Neut	ron Sour	ce,	Proc.	Sec.
	Symp.	on	Neut.	Dosim.	in Biol	. and M	ed., II	(1974	+).	

- 6. YARITSINA, I.A., A Critical Comparison of Three Methods of Absolute Yield Measurements for Neutron Source, Radiation Measurement in Nuclear Power (1966).
- 7. AXTON, E.J., CROSS, P., Reactor Sci. Technol., J.Nucl. Energy, 15, 22, (1961).
- 8. NAGGIAR, V., Rapport BIPM (1967).
- 9. BURGER, G., GRUNAUER, F., Publicação Interna do GSF, Munich.
- 10. HUGHER, D.J., MAGURNO, B.A., BRUSSEL, M.K., BNL 325, 1, (1960).
- Handbook of Chemistry and Physics, Chemical Rubber Publishing Co., Cheveland, Ohio, USA (1951).

Recebido em setembro, 1985; aceito em setembro, 1985.