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Abstract

The methods to generate a probability function from a probability density function has long been used in recent

years. In general, the discretization process produces probability functions that could be alternatives to traditional

distributions used in the analysis of count data as geometric, Poisson and negative binomial distributions. The

discretization also avoids the use of a continuous distribution in the analysis of strictly discrete data. In this

paper, using the method based on an infinite series, proposed by Good (1953), we studied an alternative discrete

Lindley distribution to those studies in Gómez-Déniz and Caldeŕın-Ojeda (2011) and Bakouch et al. (2014). For

both distributions, a simulation study is carried out to examine the bias and mean squared error for the maximum

likelihood estimators of the parameters as well the coverage probability and the length of coverage probability. For the

discrete Lindley distribution obtained by infinite series method, we present the analytical expression for bias reduction

of the maximum likelihood estimator. Some examples using real data from the literature show the potential of these

distributions. Despite the discretization methods are quite different, the resulting distributions are interchangeable,

however the distribution generated by an infinite series has simple mathematical expressions and can be used directly

to count data in the presence of covariates.

Keywords: Discretization methods, Lindley distribution, likelihood, series, survival analysis, Monte Carlo simulation.

1 Introduction

In recent years, the generation of a discrete observation from a continuous random variable has been considered

by several authors (see, for example, Chakraborty (2015)). Basically, the main purpose to discretize a continuous

probability density function is to generate a distribution for the analysis of strictly discrete data. For example, in

survival data analysis it is common to use continuous distributions for discrete data, so the discretization acts with a

subterfuge to avoid this process. A lot of applications considering continuous distributions in the analysis of discrete

data are presented in many lifetime books as for example: Hamada et al. (2008); Collett (2003); Lee and Wang (2003);

Lawless (2003); Kalbfleisch and Prentice (2002); Meeker and Escobar (1998); Klein and Moeschberger (1997) and

others.

One of the first discretized distributions introduced in the literature was the Weibull distribution. From the Weibull

distribution with probability density function:

f (x | µ,β) =
β

µβ
xβ−1 exp

[
−

(
x
µ

)β
]

(1)

and survival function:

S(x | µ,β) = exp

[
−

(
x
µ

)β
]

. (2)

Nakagawa and Osaki (1975) proposed the discrete Weibull distribution whose probability function can be written as:

P (X = x | µ,β) = exp

[
−

(
x
µ

)β
]
− exp

[
−

(
x + 1

µ

)β
]

(3)

where x ∈ N and µ,β > 0 are, respectively, the scale and shape parameters. It is easy to verify that (3) is, in fact, a

probability function.
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Recently Nekoukhou et al. (2012), using the method based on an infinite series, have introduced the Generalized

Exponential distribution whose probability function is written as:

P (X = x | α,λ) = λx−1(1 − λx)α−1




∞

∑
j=1

(
α − 1

j

)
(−1)jλj

1 − λ1+j



−1

(4)

where x ∈ N, (α−1
j ) = 1

j! (α − 1) · · · (α − j), 0 < λ < 1 and α > 0.

In this paper, also considering the method based on an infinite series, we introduce an alternative discrete Lindley

distribution and a comparison of this model with the version presented in Gómez-Déniz and Caldeŕın-Ojeda (2011)

and Bakouch et al. (2014). In Section 2, two discretization methods are presented and expressions resulting from its

application in Lindley distribution are displayed in Section 3. In section 4, the biases and mean squared error of the

maximum likelihood estimates are studied. Some applications are presented in Section 5 and in Section 6 we present

some concluding remarks.

2 Discretization methods

2.1 Discretization by survival function

Proposed by Nakagawa and Osaki (1975), this method discretize a continuous random variable from its survival function.

Some properties for a discrete analogue to continuous distributions obtained by this method were studied by Kemp

(2004), Bracquemond and Gaudoin (2003), Roy (2003), Chakraborty (2015), among others.

Following Kemp (2004), we can define an discrete analogue to continuous random variable as follows:

Definition 1: Let X a continuous random variable. If X has survival function SX(x), then the discrete random variable

Y = �X�, where �X� indicates the smallest integer part or equal to X, has PMF (probability mass function) written as:

P(Y = k) =
1

∑
j=0

(−1)jSX(k + j). (5)

It is easily verified that (5) is, in fact, a probability function for x ∈ N. If the survival function of X has compact

form, then the PMF (5) will have compact form.

Some distributions discretized by this method introduced in the literature are: Inverse Rayleigh distribution (Hussain

and Ahmad, 2014), Lindley distribution (Gómez-Déniz and Caldeŕın-Ojeda, 2011; Bakouch et al., 2014), Type II

generalized Exponential distribution (Nekoukhou et al., 2013), Gamma distribution (Chakraborty and Chakravarty,

2012), Inverse Weibull distribution (Aghababaei Jazi et al., 2010), Burr XII and Pareto distributions (Krishna and

Pundir, 2009), Rayleigh distribution (Roy, 2004), geometric Weibull distribution (Bracquemond and Gaudoin, 2003),

among others.

2.2 Discretization by an infinite series

The first traces of this method were presented in Good (1953) in a modeling study of population frequency of species.

Later, other authors such as Kulasekera and Tonkyn (1992), Doray and Luong (1997), Kemp (1997), Sato et al. (1999)

studied this method and showed a version of it when the support of continuous random variable is defined in (−∞, ∞)
or (0, ∞).

Definition 2: Let X be a continuous random variable. If X has pdf f (x) with support −∞ < x < ∞, then the discrete

random variable corresponding Y has PMF as follows:

P(Y = k) =
f (k)

∞

∑
j=−∞

f (j)
. (6)
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and Bakouch et al. (2014). In Section 2, two discretization methods are presented and expressions resulting from its

application in Lindley distribution are displayed in Section 3. In section 4, the biases and mean squared error of the

maximum likelihood estimates are studied. Some applications are presented in Section 5 and in Section 6 we present

some concluding remarks.

2 Discretization methods

2.1 Discretization by survival function

Proposed by Nakagawa and Osaki (1975), this method discretize a continuous random variable from its survival function.

Some properties for a discrete analogue to continuous distributions obtained by this method were studied by Kemp

(2004), Bracquemond and Gaudoin (2003), Roy (2003), Chakraborty (2015), among others.

Following Kemp (2004), we can define an discrete analogue to continuous random variable as follows:

Definition 1: Let X a continuous random variable. If X has survival function SX(x), then the discrete random variable

Y = �X�, where �X� indicates the smallest integer part or equal to X, has PMF (probability mass function) written as:

P(Y = k) =
1

∑
j=0

(−1)jSX(k + j). (5)

It is easily verified that (5) is, in fact, a probability function for x ∈ N. If the survival function of X has compact

form, then the PMF (5) will have compact form.

Some distributions discretized by this method introduced in the literature are: Inverse Rayleigh distribution (Hussain
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3 Autores: A comparative study

In the case where the support of X is (0, ∞), according to Sato et al. (1999), the PMF of Y is:

P(Y = k) =
f (k)

∞

∑
j=0

f (j)
. (7)

Some distributions discretized by this method introduced in the literature are: Pearson III distribution (Haight,

1957), Dirichlet’s series distribution (Siromoney, 1964), Gaussian distribution (Kemp, 1997), Gamma and exponen-

tial distributions (Sato et al., 1999), Log-Gaussian distribution (Bi et al., 2001), Laplace distribution (Inusah and

J. Kozubowski, 2006), Skew-Laplace distribution (Kozubowski and Inusah, 2006), Half-Gaussian distribution (Kemp,

2008), Beta-exponential distribution (Nekoukhou et al., 2012), among others.

3 The discrete Lindley distribution

3.1 Discretization by survival function

Let X be a continuous random variable with Lindley distribution. Using the survival function of X, Gómez-Déniz and

Caldeŕın-Ojeda (2011) and Bakouch et al. (2014) presented the discrete Lindley distribution with PMF written in the

form:

P(X = x | β) =
e−βx

1 + β
[β(1 − 2e−β) + (1 − e−β)(1 + βx)] (8)

where x ∈ N and β > 0.
The behavior of (8) for some values of β is showed in Figure 1. Note that the PMF is unimodal and when β > 1,

the mode is centered at the value zero (Bakouch et al. (2014)).

From (8) we have:

E(X) =
e−β(2β − βe−β + 1 − e−β)

(1 + β)(1 − e−β)2 , (9)

and:

V(X) =
e−β

[
(−3β2 − 4β − 2)e−β + (2β + e−2β + 1)(β + 1)

]

(1 + β)2(1 − e−β)4 . (10)

Analyzing the ratio between E(X) and V(X) we can see that E(X) < V(X) for all β > 0. So this discrete version

should only be used in data analysis with overdispersion. For more details, see Bakouch et al. (2014).

3.2 Estimation

Let x1, . . . , xn be a random sample from a distribution with PMF (8); the log-likelihood function of the discrete Lindley

distribution is given by:

l(β | x) = −nβx − n log(1 + β) +
n

∑
i=1

log [1 + (1 + xi)β − (1 + 2β + βxi) exp(−β)] . (11)

The maximum likelihood estimator β̂ of β is obtained by solving numerically, for β, the equation d
dβ l(β | x) = 0,

where:
d

dβ
l(β | x) = −nx − n

1 + β
+

n

∑
i=1

1 + xi − (1 − 2β + xi + βxi)e−β

1 + (1 + xi)β − (1 + 2β + βxi)e−β
. (12)

Note that this expression is non-linear in β and it must be solved numerically. However β̂ ≈ −0.5
(
1 −

√
1 + 4x

)
if

e−β ≈ 1 (Bakouch et al., 2014).

The confidence intervals for β as well hypothesis tests of interest can be constructed from the asymptotic normality

of the maximum likelihood estimates considering large sample sizes.
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Figure 1: Behavior of the probability function of the discrete Lindley distribution, obtained by survival function,
considering different values for β (upper-left panel: β = 0.1, upper-right panel: β = 0.2, lower-left panel: β = 0.5 and
lower-right panel: β = 1.2).

3.3 Discretization by infinite series

By the discretization method presented in Section 2.2 the discrete Lindley has PMF written in the form:

P(X = x | β) = (1 + x)e−β(x+2)(eβ − 1)2 (13)

where x ∈ N and β > 0.
According to the equation (13), it is observed that the PMF is unimodal with mode given as follows:

x0 =




⌊
e−β

1 − e−β

⌋
, if

e−β

1 − e−β
/∈ Z,

e−β

1 − e−β
, if

e−β

1 − e−β
∈ Z

(14)

In fact, note that:

[P(X = x)]2 = (1 + x)2(e−β(x+2))2(eβ − 1)4

= (1 + x)2e−β(x+1)e−β(x+3)(eβ − 1)4

≥ xe−β(x+1)(eβ − 1)2(x + 2)e−β(x+3)(eβ − 1)2.

The right side of the above inequality is the same as P(X = x − 1)P(X = x + 1). So, the equation (13) satisfies the
log-concavity inequality P2(X = x) ≥ P(X = x − 1)P(X = x + 1) for x = 1, 2, . . . and, therefore, by Theorem 3 from
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Figure 1: Behavior of the probability function of the discrete Lindley distribution, obtained by survival function,
considering different values for β (upper-left panel: β = 0.1, upper-right panel: β = 0.2, lower-left panel: β = 0.5 and
lower-right panel: β = 1.2).

3.3 Discretization by infinite series

By the discretization method presented in Section 2.2 the discrete Lindley has PMF written in the form:

P(X = x | β) = (1 + x)e−β(x+2)(eβ − 1)2 (13)

where x ∈ N and β > 0.
According to the equation (13), it is observed that the PMF is unimodal with mode given as follows:

x0 =




⌊
e−β

1 − e−β

⌋
, if

e−β

1 − e−β
/∈ Z,

e−β

1 − e−β
, if

e−β

1 − e−β
∈ Z

(14)

In fact, note that:

[P(X = x)]2 = (1 + x)2(e−β(x+2))2(eβ − 1)4

= (1 + x)2e−β(x+1)e−β(x+3)(eβ − 1)4

≥ xe−β(x+1)(eβ − 1)2(x + 2)e−β(x+3)(eβ − 1)2.

The right side of the above inequality is the same as P(X = x − 1)P(X = x + 1). So, the equation (13) satisfies the
log-concavity inequality P2(X = x) ≥ P(X = x − 1)P(X = x + 1) for x = 1, 2, . . . and, therefore, by Theorem 3 from
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Figure 2: Behavior of the probability function of the discrete Lindley distribution, obtained by infinite series, considering
different values for β (upper-left panel: β = 0.1, upper-right panel: β = 0.2, lower-left panel: β = 0.5 and lower-right
panel: β = 1.2).

Keilson and Gerber (1971), is unimodal. In Figure 2 it is illustrated the behavior of (13) for some values of β.

For a random variable X with PMF (13) the corresponding probability generating function and the moment

generating function can be expressed, respectively as:

G (k) = E
(
kX) =

(
eβ−1
eβ−k

)2
and M (k) = E

(
ekX

)
=

2e−2 k(eβ−1)
2

(eβ−k−1)
3 .

Different from the discretized version obtained by survival function, the version proposed here has simple expressions

for the mean and variance:

E(X) =
2

eβ − 1
and V(X) =

2eβ

(eβ − 1)2 .

For all β > 0 it is easily to see that E(X) < V(X). In this way, this distribution can be used in the count data

analysis with overdispersion. The dispersion index is written as
eβ

eβ − 1
.

3.4 Estimation

Let x1, . . . , xn be a random sample from (13); the log-likelihood function is given by:

l(β | x) ∝ 2n log(eβ − 1)− β(2n + nx). (15)
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Figure 2: Behavior of the probability function of the discrete Lindley distribution, obtained by infinite series, considering
different values for β (upper-left panel: β = 0.1, upper-right panel: β = 0.2, lower-left panel: β = 0.5 and lower-right
panel: β = 1.2).

Keilson and Gerber (1971), is unimodal. In Figure 2 it is illustrated the behavior of (13) for some values of β.

For a random variable X with PMF (13) the corresponding probability generating function and the moment

generating function can be expressed, respectively as:

G (k) = E
(
kX) =

(
eβ−1
eβ−k

)2
and M (k) = E

(
ekX

)
=

2e−2 k(eβ−1)
2

(eβ−k−1)
3 .

Different from the discretized version obtained by survival function, the version proposed here has simple expressions

for the mean and variance:

E(X) =
2

eβ − 1
and V(X) =

2eβ

(eβ − 1)2 .

For all β > 0 it is easily to see that E(X) < V(X). In this way, this distribution can be used in the count data

analysis with overdispersion. The dispersion index is written as
eβ

eβ − 1
.

3.4 Estimation

Let x1, . . . , xn be a random sample from (13); the log-likelihood function is given by:

l(β | x) ∝ 2n log(eβ − 1)− β(2n + nx). (15)
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The maximum likelihood estimator of β is obtained by solving d
dβ l(β | x) = 0 in β. That is:

d
dβ

l(β | x) =
2neβ

eβ − 1
− 2n − nx that is, β̂ = log

(
1 +

2
x

)
. (16)

The second derivative of the log-likelihood function is given by:

d2

dβ2 l(β | x) = − 2neβ

(
eβ − 1

)2 (17)

therefore:

E

[
− d2

dβ2 l(β | x)
]
=

2neβ

(
eβ − 1

)2 . (18)

Solving (18) locally in β̂ we have:

V̂ar(β̂) =
2

nx (2 + x)
. (19)

Theorem 1: The estimator β̂ of β is positively biased, that is, E(β̂)− β > 0.
Proof: Let

β̂ = g(X)

and

g(t) = log
(

1 +
2
t

)
,

for t > 0. Since

g′′(t) =
4(t + 1)

t2(t + 1)2 > 0,

g(t) is strictly convex. Thus, by Jensen’s inequality, we have E
(

g(X)
)
> g(E(X)). Finally, since:

g(E(X)) = g
(

2
eβ + 1

)
= log(1 + eβ − 1) = β.

we obtain E(β̂) > β. Therefore, the estimator β̂ of β is positively biased.

Cox and Snell (1968) provided a framework for estimating the bias, to O(n−1) for the maximum likelihood estimators

of the parameters of regular densities. Then, subtracting the estimated bias from the original maximum likelihood

estimator produces a bias-corrected estimator that is unbiased to O(n−2). This type of bias adjustment can be applied

successfully in the discrete Lindley distribution given in (13). Following Cox and Snell (1968) we have:

BIAS(β̂) =
(

κ11
)2

[0.5κ111 + κ11,1] + O
(

n−2
)

(20)

where κ11 = E
[
− ∂2

∂β2 l(β | x)
]−1

= 1
2neβ

(
eβ − 1

)2 , κ11,1 = E
[

∂2

∂β2 l(β | x)× ∂
∂β l(β | x)

]
= 0 and κ111 = E

[
∂3

∂β3 l(β | x)
]
=

1
(eβ−1)

3 2neβ
(
eβ + 1

)
.

In this way, the bias-corrected maximum likelihood estimator β̂CMLE can be written as:

β̂CMLE = β̂ − 1
4n

(
eβ̂ − e−β̂

)
. (21)

Re-parameterizing (13) in terms of the mean θ =
2

eβ − 1
we have β = log( 2+θ

θ ) such that θ̂ = x. The bias-corrected

maximum likelihood estimator for θ is given by θ̂ − 1+θ̂
n . It is important to point out that in terms of θ we have

P(X = x | θ) = 4 (1 + x) θx (2 + θ)−(2+x) , (22)

such that E (X) = θ and V(X) = θ + θ2

2 .
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n . It is important to point out that in terms of θ we have

P(X = x | θ) = 4 (1 + x) θx (2 + θ)−(2+x) , (22)
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4 Simulation study

In this section we estimated, by Monte Carlo simulation, the biases, the mean squared errors, the coverage probabilities

and the coverage lengths for the maximum likelihood estimator, β̂, for discrete Lindley distributions obtained by

survival function and infinity series. For computational stability, we assumed the values β = 0.2, 0.5, 0.8, 1.0, 1.2 and

sample sizes n = 10, 20, . . . , 90, 100. For each scenario, we calculated:

BIAS(β̂) =
1
N

N

∑
i=1

(β̂i − β), MSE(β̂) =
1
N

N

∑
i=1

(β̂i − β)2,

CPβ(n) =
1
N

N

∑
i=1

I{β̂i − 1.96ŝ
β̂i
< β < β̂i + 1.96ŝ

β̂i
} and CLβ(n) =

3.92
N

N

∑
i=1

s
β̂i

where I{·} denotes the indicator function and the number of simulations, N = 10.000. The simulation study are

performed using R version 3.3.0 (R Core Team, 2015).

In Table 1, it is presented the simulation results for discrete Lindley distribution obtained by survival function. In

Tables 2 and 3, are presented the simulation results for maximum likelihood estimator and bias-corrected maximum

likelihood estimator for the discrete Lindley distribution obtained by infinite series.

In every scenario, for both discretizations, we have that the bias of β̂ is positive and tends to zero when the sample

size increases. It is also observed that the mean square error of β̂ tends to zero in every scenario. Related to the

coverage probabilities, we have CPβ(n) ranging from 0.94 to 0.96 and the coverage length tends to zero when the

sample size increases.

Table 1: Estimated bias, mean-squared error, coverage probability and length of coverage probability for β (by survival
function).

Values of β Values of β
n 0.2 0.5 0.8 1.0 1.2 n 0.2 0.5 0.8 1.0 1.2

BIAS

10 0.0141 0.0263 0.0640 0.0674 0.0902

CPβ(n)

10 0.9537 0.9358 0.9620 0.965 0.9610
20 0.0080 0.0106 0.0340 0.0332 0.0435 20 0.9459 0.9480 0.9620 0.954 0.9590
30 0.0056 0.0074 0.0200 0.0188 0.0339 30 0.9448 0.9418 0.9510 0.967 0.9540
40 0.0039 0.0041 0.0129 0.0132 0.0250 40 0.9488 0.9500 0.9390 0.959 0.9410
50 0.0030 0.0027 0.0080 0.0114 0.0201 50 0.9357 0.9458 0.9499 0.964 0.9550
60 0.0025 0.0015 0.0055 0.0083 0.0170 60 0.9409 0.9510 0.9510 0.964 0.9570
70 0.0022 0.0001 0.0050 0.0078 0.0153 70 0.9436 0.9519 0.9530 0.967 0.9560
80 0.0018 0.0007 0.0037 0.0081 0.0125 80 0.9488 0.9469 0.9520 0.957 0.9500
90 0.0018 0.0003 0.0039 0.0085 0.0102 90 0.9498 0.9469 0.9500 0.956 0.9389
100 0.0016 0.0007 0.0013 0.0084 0.0070 100 0.9409 0.9480 0.9510 0.961 0.9459

MSE

10 0.0029 0.0177 0.0559 0.0826 0.1487

CLβ(n)

10 0.1895 0.4805 0.8229 1.0454 1.3118
20 0.0014 0.0074 0.0216 0.0383 0.0564 20 0.1300 0.3284 0.5567 0.7079 0.8769
30 0.0009 0.0050 0.0137 0.0217 0.0364 30 0.1049 0.2662 0.4457 0.5676 0.7076
40 0.0006 0.0036 0.0100 0.0163 0.0262 40 0.0901 0.2289 0.3820 0.4881 0.6069
50 0.0005 0.0028 0.0077 0.0124 0.0203 50 0.0802 0.2041 0.3393 0.4355 0.5398
60 0.0004 0.0022 0.0064 0.0102 0.0163 60 0.0730 0.1858 0.3087 0.3960 0.4911
70 0.0003 0.0018 0.0055 0.0089 0.0136 70 0.0675 0.1715 0.2855 0.3664 0.4538
80 0.0003 0.0017 0.0049 0.0078 0.0124 80 0.0630 0.1606 0.2666 0.3428 0.4233
90 0.0002 0.0015 0.0043 0.0069 0.0108 90 0.0594 0.1513 0.2514 0.3232 0.3981
100 0.0002 0.0014 0.0038 0.0062 0.0096 100 0.0563 0.1436 0.2376 0.3066 0.3765

Table 2: Estimated bias, mean-squared error, coverage probability and length of coverage probability for β (by infinite
series).

Values of β Values of β
n 0.2 0.5 0.8 1.0 1.2 n 0.2 0.5 0.8 1.0 1.2

BIAS

10 0.0137 0.0262 0.0537 0.0570 0.0748

CPβ(n)

10 0.949 0.950 0.964 0.972 0.957
20 0.0068 0.0097 0.0286 0.0279 0.0351 20 0.947 0.955 0.953 0.956 0.960
30 0.0049 0.0065 0.0173 0.0161 0.0283 30 0.948 0.939 0.957 0.959 0.953
40 0.0035 0.0038 0.0111 0.0113 0.0210 40 0.940 0.959 0.948 0.965 0.952
50 0.0027 0.0024 0.0072 0.0105 0.0169 50 0.940 0.944 0.951 0.967 0.952
60 0.0025 0.0019 0.0048 0.0075 0.0135 60 0.940 0.953 0.959 0.955 0.953
70 0.0023 0.0010 0.0043 0.0070 0.0123 70 0.936 0.947 0.956 0.959 0.947
80 0.0019 0.0011 0.0032 0.0076 0.0098 80 0.942 0.949 0.954 0.950 0.956
90 0.0020 0.0006 0.0036 0.0076 0.0080 90 0.948 0.947 0.953 0.959 0.951
100 0.0017 0.0008 0.0013 0.0077 0.0056 100 0.945 0.956 0.944 0.958 0.944

MSE

10 0.0029 0.0171 0.0479 0.0675 0.1256

CLβ(n)

10 0.1877 0.4676 0.7761 0.9787 1.2153
20 0.0012 0.0067 0.0187 0.0314 0.0472 20 0.1284 0.3196 0.5296 0.6682 0.8200
30 0.0008 0.0045 0.0121 0.0185 0.0312 30 0.1039 0.2592 0.4258 0.5379 0.6640
40 0.0006 0.0034 0.0090 0.0143 0.0229 40 0.0893 0.2232 0.3657 0.4632 0.5706
50 0.0004 0.0027 0.0070 0.0110 0.0176 50 0.0796 0.1991 0.3254 0.4137 0.5081
60 0.0004 0.0021 0.0059 0.0090 0.0140 60 0.0726 0.1816 0.2961 0.3764 0.4622
70 0.0003 0.0018 0.0051 0.0079 0.0118 70 0.0671 0.1677 0.2739 0.3482 0.4273
80 0.0003 0.0016 0.0045 0.0069 0.0105 80 0.0627 0.1569 0.2558 0.3259 0.3987
90 0.0003 0.0014 0.0039 0.0061 0.0093 90 0.0591 0.1478 0.2413 0.3072 0.3752
100 0.0002 0.0013 0.0034 0.0055 0.0083 100 0.0560 0.1403 0.2282 0.2915 0.3551

4   Simulation study
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4 Simulation study

In this section we estimated, by Monte Carlo simulation, the biases, the mean squared errors, the coverage probabilities

and the coverage lengths for the maximum likelihood estimator, β̂, for discrete Lindley distributions obtained by

survival function and infinity series. For computational stability, we assumed the values β = 0.2, 0.5, 0.8, 1.0, 1.2 and

sample sizes n = 10, 20, . . . , 90, 100. For each scenario, we calculated:

BIAS(β̂) =
1
N

N

∑
i=1

(β̂i − β), MSE(β̂) =
1
N

N

∑
i=1

(β̂i − β)2,

CPβ(n) =
1
N

N

∑
i=1

I{β̂i − 1.96ŝ
β̂i
< β < β̂i + 1.96ŝ

β̂i
} and CLβ(n) =

3.92
N

N

∑
i=1

s
β̂i

where I{·} denotes the indicator function and the number of simulations, N = 10.000. The simulation study are

performed using R version 3.3.0 (R Core Team, 2015).

In Table 1, it is presented the simulation results for discrete Lindley distribution obtained by survival function. In

Tables 2 and 3, are presented the simulation results for maximum likelihood estimator and bias-corrected maximum

likelihood estimator for the discrete Lindley distribution obtained by infinite series.

In every scenario, for both discretizations, we have that the bias of β̂ is positive and tends to zero when the sample

size increases. It is also observed that the mean square error of β̂ tends to zero in every scenario. Related to the

coverage probabilities, we have CPβ(n) ranging from 0.94 to 0.96 and the coverage length tends to zero when the

sample size increases.

Table 1: Estimated bias, mean-squared error, coverage probability and length of coverage probability for β (by survival
function).

Values of β Values of β
n 0.2 0.5 0.8 1.0 1.2 n 0.2 0.5 0.8 1.0 1.2

BIAS

10 0.0141 0.0263 0.0640 0.0674 0.0902

CPβ(n)

10 0.9537 0.9358 0.9620 0.965 0.9610
20 0.0080 0.0106 0.0340 0.0332 0.0435 20 0.9459 0.9480 0.9620 0.954 0.9590
30 0.0056 0.0074 0.0200 0.0188 0.0339 30 0.9448 0.9418 0.9510 0.967 0.9540
40 0.0039 0.0041 0.0129 0.0132 0.0250 40 0.9488 0.9500 0.9390 0.959 0.9410
50 0.0030 0.0027 0.0080 0.0114 0.0201 50 0.9357 0.9458 0.9499 0.964 0.9550
60 0.0025 0.0015 0.0055 0.0083 0.0170 60 0.9409 0.9510 0.9510 0.964 0.9570
70 0.0022 0.0001 0.0050 0.0078 0.0153 70 0.9436 0.9519 0.9530 0.967 0.9560
80 0.0018 0.0007 0.0037 0.0081 0.0125 80 0.9488 0.9469 0.9520 0.957 0.9500
90 0.0018 0.0003 0.0039 0.0085 0.0102 90 0.9498 0.9469 0.9500 0.956 0.9389
100 0.0016 0.0007 0.0013 0.0084 0.0070 100 0.9409 0.9480 0.9510 0.961 0.9459

MSE

10 0.0029 0.0177 0.0559 0.0826 0.1487

CLβ(n)

10 0.1895 0.4805 0.8229 1.0454 1.3118
20 0.0014 0.0074 0.0216 0.0383 0.0564 20 0.1300 0.3284 0.5567 0.7079 0.8769
30 0.0009 0.0050 0.0137 0.0217 0.0364 30 0.1049 0.2662 0.4457 0.5676 0.7076
40 0.0006 0.0036 0.0100 0.0163 0.0262 40 0.0901 0.2289 0.3820 0.4881 0.6069
50 0.0005 0.0028 0.0077 0.0124 0.0203 50 0.0802 0.2041 0.3393 0.4355 0.5398
60 0.0004 0.0022 0.0064 0.0102 0.0163 60 0.0730 0.1858 0.3087 0.3960 0.4911
70 0.0003 0.0018 0.0055 0.0089 0.0136 70 0.0675 0.1715 0.2855 0.3664 0.4538
80 0.0003 0.0017 0.0049 0.0078 0.0124 80 0.0630 0.1606 0.2666 0.3428 0.4233
90 0.0002 0.0015 0.0043 0.0069 0.0108 90 0.0594 0.1513 0.2514 0.3232 0.3981
100 0.0002 0.0014 0.0038 0.0062 0.0096 100 0.0563 0.1436 0.2376 0.3066 0.3765

Table 2: Estimated bias, mean-squared error, coverage probability and length of coverage probability for β (by infinite
series).

Values of β Values of β
n 0.2 0.5 0.8 1.0 1.2 n 0.2 0.5 0.8 1.0 1.2

BIAS

10 0.0137 0.0262 0.0537 0.0570 0.0748

CPβ(n)

10 0.949 0.950 0.964 0.972 0.957
20 0.0068 0.0097 0.0286 0.0279 0.0351 20 0.947 0.955 0.953 0.956 0.960
30 0.0049 0.0065 0.0173 0.0161 0.0283 30 0.948 0.939 0.957 0.959 0.953
40 0.0035 0.0038 0.0111 0.0113 0.0210 40 0.940 0.959 0.948 0.965 0.952
50 0.0027 0.0024 0.0072 0.0105 0.0169 50 0.940 0.944 0.951 0.967 0.952
60 0.0025 0.0019 0.0048 0.0075 0.0135 60 0.940 0.953 0.959 0.955 0.953
70 0.0023 0.0010 0.0043 0.0070 0.0123 70 0.936 0.947 0.956 0.959 0.947
80 0.0019 0.0011 0.0032 0.0076 0.0098 80 0.942 0.949 0.954 0.950 0.956
90 0.0020 0.0006 0.0036 0.0076 0.0080 90 0.948 0.947 0.953 0.959 0.951
100 0.0017 0.0008 0.0013 0.0077 0.0056 100 0.945 0.956 0.944 0.958 0.944

MSE

10 0.0029 0.0171 0.0479 0.0675 0.1256

CLβ(n)

10 0.1877 0.4676 0.7761 0.9787 1.2153
20 0.0012 0.0067 0.0187 0.0314 0.0472 20 0.1284 0.3196 0.5296 0.6682 0.8200
30 0.0008 0.0045 0.0121 0.0185 0.0312 30 0.1039 0.2592 0.4258 0.5379 0.6640
40 0.0006 0.0034 0.0090 0.0143 0.0229 40 0.0893 0.2232 0.3657 0.4632 0.5706
50 0.0004 0.0027 0.0070 0.0110 0.0176 50 0.0796 0.1991 0.3254 0.4137 0.5081
60 0.0004 0.0021 0.0059 0.0090 0.0140 60 0.0726 0.1816 0.2961 0.3764 0.4622
70 0.0003 0.0018 0.0051 0.0079 0.0118 70 0.0671 0.1677 0.2739 0.3482 0.4273
80 0.0003 0.0016 0.0045 0.0069 0.0105 80 0.0627 0.1569 0.2558 0.3259 0.3987
90 0.0003 0.0014 0.0039 0.0061 0.0093 90 0.0591 0.1478 0.2413 0.3072 0.3752
100 0.0002 0.0013 0.0034 0.0055 0.0083 100 0.0560 0.1403 0.2282 0.2915 0.3551
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Table 3: Estimated bias, mean-squared error, coverage probability and length of coverage probability for βCMLE (by
infinite series).

Values of β Values of β
n 0.2 0.5 0.8 1.0 1.2 n 0.2 0.5 0.8 1.0 1.2

BIAS

10 0.0029 -0.0016 0.0044 -0.0086 -0.0139

CPβ(n)

10 0.941 0.933 0.946 0.943 0.939
20 0.0015 -0.0037 0.0053 -0.0031 -0.0052 20 0.942 0.947 0.953 0.946 0.948
30 0.0015 -0.0023 0.0020 -0.0041 0.0019 30 0.942 0.939 0.957 0.959 0.945
40 0.0009 -0.0028 -0.0003 -0.0037 0.0014 40 0.934 0.952 0.943 0.965 0.952
50 0.0006 -0.0028 -0.0018 -0.0015 0.0014 50 0.937 0.944 0.944 0.959 0.952
60 0.0008 -0.0024 -0.0026 -0.0024 0.0006 60 0.936 0.953 0.950 0.955 0.948
70 0.0008 -0.0028 -0.0021 -0.0015 0.0013 70 0.935 0.942 0.953 0.959 0.947
80 0.0007 -0.0022 -0.0024 0.0002 0.0002 80 0.940 0.949 0.954 0.950 0.956
90 0.0009 -0.0023 -0.0014 0.0010 -0.0005 90 0.946 0.947 0.949 0.955 0.944
100 0.0007 -0.0018 -0.0031 0.0017 -0.0021 100 0.944 0.952 0.944 0.956 0.944

MSE

10 0.0024 0.0145 0.0380 0.0530 0.0911

CLβ(n)

10 0.1782 0.4423 0.7280 0.9115 1.1156
20 0.0011 0.0063 0.0167 0.0281 0.0415 20 0.1251 0.3110 0.5138 0.6462 0.7896
30 0.0007 0.0043 0.0113 0.0173 0.0284 30 0.1021 0.2546 0.4174 0.5262 0.6479
40 0.0005 0.0033 0.0085 0.0136 0.0214 40 0.0882 0.2202 0.3603 0.4557 0.5603
50 0.0004 0.0026 0.0068 0.0105 0.0167 50 0.0788 0.1970 0.3215 0.4084 0.5008
60 0.0004 0.0021 0.0058 0.0087 0.0134 60 0.0720 0.1799 0.2932 0.3724 0.4567
70 0.0003 0.0018 0.0050 0.0076 0.0113 70 0.0666 0.1665 0.2716 0.3450 0.4230
80 0.0003 0.0016 0.0044 0.0067 0.0102 80 0.0623 0.1559 0.2539 0.3233 0.3952
90 0.0002 0.0014 0.0039 0.0059 0.0090 90 0.0588 0.1469 0.2397 0.3051 0.3723
100 0.0002 0.0012 0.0034 0.0054 0.0082 100 0.0557 0.1395 0.2269 0.2896 0.3526

5 Applications

5.1 Application 1 (without covariates)

Consider a dataset related to the number of times that a computer break-down in each of 128 consecutive weeks

of operation (Chakraborty and Chakravarty, 2012). The mean and variance are given respectively by, x = 4.023
times and s2 = 14.464 times2, which evidences overdispersion. The fit of a discrete Lindley distribution obtained by

infinite series (DLIS) was compared to the fit of another discrete Lindley distribution obtained by survival function

(DLS), P(X = x | β) = e−βx(1 + β)−1[β(1 − e−β) + (1 − e−β)(1 + βx)] (Bakouch et al., 2014), a discrete Rayleigh

(DR), P(X = x | θ) = θx2 − θ(x+1)2
(Roy, 2004), a geometric (G), P(X = x | θ) = θx − θ(x+1), and a Poisson (P),

P(X = x | β) = e−β βx

x! .

The parameters were estimated by maximum likelihood method (MLE) and to compare the fits we considered the

values of −logL, AIC, BIC and the χ2 goodness-of-fit (see, Table 5). We conclude that, between DLIS and DLS, the

results are almost the same. But, in terms of equations and computational stability, the DLIS distribution has a better

fit when compared to the others distributions considered in this application.

Table 4: Observed and expected number of times that computer break-down considering the DLIS, DLS, DR, G, P and
NB distributions.

Number of Expected
Break-Down Observed DLIS DLS DR G P NB

0 15 14.11 16.48 3.63 25.48 2.29 16.09
1 18 18.85 18.91 10.29 20.40 9.21 19.38
2 24 18.88 18.14 15.29 16.34 18.53 18.46
3 14 16.82 15.95 18.03 13.09 24.85 16.03
4 15 14.04 13.32 18.43 10.48 25.00 13.25
5 10 11.25 10.76 16.91 8.39 20.12 10.62
6 8 8.77 8.48 14.17 6.72 13.49 8.33
+6 24 25.24 25.93 31.22 27.06 14.48 25.79

Total 128 128 128 128 128 128 128

Table 5: Parameter estimates and goodness-of-fit measures.

Distribution MLE S.E − log L χ2 p-value D.F AIC BIC

DLIS β̂ = 0.403 0.025 316.795 2.286 0.891 6 635.59 638.44

DLS β̂ = 0.381 0.024 316.679 2.744 0.840 6 635.35 638.21

DR θ̂ = 0.971 0.002 346.751 55.01 0.001 6 695.50 698.35

G θ̂ = 0.800 0.015 320.925 11.07 0.085 6 643.85 646.70

P λ̂ = 4.023 0.177 384.276 102.8 0.001 6 770.55 773.40
NB p̂ = 1.718 0.320 316.471 2.496 0.777 5 636.94 642.64

µ̂ = 4.024 0.324
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Table 3: Estimated bias, mean-squared error, coverage probability and length of coverage probability for βCMLE (by
infinite series).

Values of β Values of β
n 0.2 0.5 0.8 1.0 1.2 n 0.2 0.5 0.8 1.0 1.2

BIAS

10 0.0029 -0.0016 0.0044 -0.0086 -0.0139

CPβ(n)

10 0.941 0.933 0.946 0.943 0.939
20 0.0015 -0.0037 0.0053 -0.0031 -0.0052 20 0.942 0.947 0.953 0.946 0.948
30 0.0015 -0.0023 0.0020 -0.0041 0.0019 30 0.942 0.939 0.957 0.959 0.945
40 0.0009 -0.0028 -0.0003 -0.0037 0.0014 40 0.934 0.952 0.943 0.965 0.952
50 0.0006 -0.0028 -0.0018 -0.0015 0.0014 50 0.937 0.944 0.944 0.959 0.952
60 0.0008 -0.0024 -0.0026 -0.0024 0.0006 60 0.936 0.953 0.950 0.955 0.948
70 0.0008 -0.0028 -0.0021 -0.0015 0.0013 70 0.935 0.942 0.953 0.959 0.947
80 0.0007 -0.0022 -0.0024 0.0002 0.0002 80 0.940 0.949 0.954 0.950 0.956
90 0.0009 -0.0023 -0.0014 0.0010 -0.0005 90 0.946 0.947 0.949 0.955 0.944
100 0.0007 -0.0018 -0.0031 0.0017 -0.0021 100 0.944 0.952 0.944 0.956 0.944

MSE

10 0.0024 0.0145 0.0380 0.0530 0.0911

CLβ(n)

10 0.1782 0.4423 0.7280 0.9115 1.1156
20 0.0011 0.0063 0.0167 0.0281 0.0415 20 0.1251 0.3110 0.5138 0.6462 0.7896
30 0.0007 0.0043 0.0113 0.0173 0.0284 30 0.1021 0.2546 0.4174 0.5262 0.6479
40 0.0005 0.0033 0.0085 0.0136 0.0214 40 0.0882 0.2202 0.3603 0.4557 0.5603
50 0.0004 0.0026 0.0068 0.0105 0.0167 50 0.0788 0.1970 0.3215 0.4084 0.5008
60 0.0004 0.0021 0.0058 0.0087 0.0134 60 0.0720 0.1799 0.2932 0.3724 0.4567
70 0.0003 0.0018 0.0050 0.0076 0.0113 70 0.0666 0.1665 0.2716 0.3450 0.4230
80 0.0003 0.0016 0.0044 0.0067 0.0102 80 0.0623 0.1559 0.2539 0.3233 0.3952
90 0.0002 0.0014 0.0039 0.0059 0.0090 90 0.0588 0.1469 0.2397 0.3051 0.3723
100 0.0002 0.0012 0.0034 0.0054 0.0082 100 0.0557 0.1395 0.2269 0.2896 0.3526

5 Applications

5.1 Application 1 (without covariates)

Consider a dataset related to the number of times that a computer break-down in each of 128 consecutive weeks

of operation (Chakraborty and Chakravarty, 2012). The mean and variance are given respectively by, x = 4.023
times and s2 = 14.464 times2, which evidences overdispersion. The fit of a discrete Lindley distribution obtained by

infinite series (DLIS) was compared to the fit of another discrete Lindley distribution obtained by survival function

(DLS), P(X = x | β) = e−βx(1 + β)−1[β(1 − e−β) + (1 − e−β)(1 + βx)] (Bakouch et al., 2014), a discrete Rayleigh

(DR), P(X = x | θ) = θx2 − θ(x+1)2
(Roy, 2004), a geometric (G), P(X = x | θ) = θx − θ(x+1), and a Poisson (P),

P(X = x | β) = e−β βx

x! .

The parameters were estimated by maximum likelihood method (MLE) and to compare the fits we considered the

values of −logL, AIC, BIC and the χ2 goodness-of-fit (see, Table 5). We conclude that, between DLIS and DLS, the

results are almost the same. But, in terms of equations and computational stability, the DLIS distribution has a better

fit when compared to the others distributions considered in this application.

Table 4: Observed and expected number of times that computer break-down considering the DLIS, DLS, DR, G, P and
NB distributions.

Number of Expected
Break-Down Observed DLIS DLS DR G P NB

0 15 14.11 16.48 3.63 25.48 2.29 16.09
1 18 18.85 18.91 10.29 20.40 9.21 19.38
2 24 18.88 18.14 15.29 16.34 18.53 18.46
3 14 16.82 15.95 18.03 13.09 24.85 16.03
4 15 14.04 13.32 18.43 10.48 25.00 13.25
5 10 11.25 10.76 16.91 8.39 20.12 10.62
6 8 8.77 8.48 14.17 6.72 13.49 8.33
+6 24 25.24 25.93 31.22 27.06 14.48 25.79

Total 128 128 128 128 128 128 128

Table 5: Parameter estimates and goodness-of-fit measures.

Distribution MLE S.E − log L χ2 p-value D.F AIC BIC

DLIS β̂ = 0.403 0.025 316.795 2.286 0.891 6 635.59 638.44

DLS β̂ = 0.381 0.024 316.679 2.744 0.840 6 635.35 638.21

DR θ̂ = 0.971 0.002 346.751 55.01 0.001 6 695.50 698.35

G θ̂ = 0.800 0.015 320.925 11.07 0.085 6 643.85 646.70

P λ̂ = 4.023 0.177 384.276 102.8 0.001 6 770.55 773.40
NB p̂ = 1.718 0.320 316.471 2.496 0.777 5 636.94 642.64

µ̂ = 4.024 0.3249 Autores: A comparative study

5.2 Application 2 (with covariates)

In this application, we considered a dataset introduced by Long (1990) related to the number of publications produced

by Ph.D. biochemists to illustrate the application of a discrete Lindley distributions (DLIS and DLS) in presence of

covariates. Its fit is compared to the negative binomial distribution.

Table 6: Dataset: Number of publications produced by Ph.D. biochemists.

Variable Description n Mean Variance Min Max

art # articles produced in last three years of Ph.D 915 1.69 3.71 0 19
x1 1 for females (two levels) 915 - - 0 1
x2 1 for married (two levels) 915 - - 0 1
x3 # of children under age six 915 0.50 0.59 0 3
x4 prestige of Ph.D. program 915 3.10 0.97 0.73 3
x5 # articles by mentor in last three years 915 8.77 89.94 0 77

This dataset have also been analyzed by Long et al. (2001) and is available from the Stata website http://www.

stata-press.com/data/lf2/couart2.dta. The mean number of articles is 1.69 and the variance is 3.71, a little more

than twice the mean (see Table 6). The data are over-dispersed. Results are showed in Tables 7 and 8. For both

distributions we consider: log(β) = β0 +
5

∑
i=1

βixi where xi are described in Table 6.

Table 7: Parameter estimates and standard errors for Negative Binomial and Discrete Lindley models.

Parameter Negative DLIS DLS 95% Conf. Int. 95% Conf. Int. 95% Conf. Int.
Binomial N. Binomial DLIS DLS

β0
0.2561 0.2529 0.5038

(-0.015,0.527) (-0.026,0.532) (0.220, 0.787)
(0.1386) (0.1425) (0.1446)

β1
-0.2164 -0.2159 0.2092

(-0.358,-0.074) (-0.362,-0.069) (0.060, 0.357)
(0.0727) (0.0747) (0.0758)

β2
0.1505 0.1504 -0.1471

(-0.010,0.311) (-0.015,0.316) (-0.315, 0.020)
(0.0821) (0.0844) (0.0857)

β3
-0.1764 -0.1761 0.1708

(-0.280,-0.072) (-0.283,-0.069) (0.063, 0.278)
(0.0531) (0.0545) (0.0549)

β4
0.01527 0.0156 -0.0154

(-0.055,0.085) (-0.057,0.088) (-0.089, 0.058)
(0.0360) (0.0371) (0.0376)

β5
0.02908 0.02926 -0.0292

(0.022,0.035) (0.022,0.036) (-0.036,-0.021)
(0.0035) (0.0036) (0.0037)

α
0.4416

(0.337,0.545)
(0.0530)

It is observed from the results in Table 7, that the DLIS distribution estimates are not very different from those

obtained assuming the negative binomial model, and both sets would led to the same conclusions and looking at the

standard errors, we see that both approaches to overdispersion lead to very similar estimated standard errors. However,

the LDS estimates, except for the sign, are basically the same of the others models. Now, looking regression coefficients,

we conclude that, in DLS distribution, β2, β4 are not significant; in DLIS distribution, β0, β2, β4 are not significant;

and, in negative binomial distribution, β0, β2, β4 are not significant (see confidence intervals in Table 7). Also, looking

the AIC (Akaike, 1974), AICc (Cavanaugh, 1997) and BIC (Bhat and Kumar, 2010) criterion introduced in Table 8,

they are, basically, the same, but the DLS model is better in terms of parsimony and goodness of fit.

Table 8: Goodness-of-fit measures.

Goodness-of-fit Negative DLIS DLS
Criteria Binomial
-2 Log Likelihood 3121.9 3123.0 3133.0
AIC (smaller is better) 3135.9 3135.0 3141.0
AICC (smaller is better) 3136.0 3135.1 3141.2
BIC (smaller is better) 3169.6 3164.0 3160.2

5.3 Application 3 (with covariates)

In this application, we considered the dataset analyzed by Deb and Trivedi (1997) and Liu and Cela (2008) to illustrate

just the application of discrete Lindley (DLIS), zero-inflated discrete Lindley (ZIDLIS) and Hurdle discrete Lindley

5   Aplications
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5.2 Application 2 (with covariates)

In this application, we considered a dataset introduced by Long (1990) related to the number of publications produced

by Ph.D. biochemists to illustrate the application of a discrete Lindley distributions (DLIS and DLS) in presence of

covariates. Its fit is compared to the negative binomial distribution.

Table 6: Dataset: Number of publications produced by Ph.D. biochemists.

Variable Description n Mean Variance Min Max
art # articles produced in last three years of Ph.D 915 1.69 3.71 0 19
x1 1 for females (two levels) 915 - - 0 1
x2 1 for married (two levels) 915 - - 0 1
x3 # of children under age six 915 0.50 0.59 0 3
x4 prestige of Ph.D. program 915 3.10 0.97 0.73 3
x5 # articles by mentor in last three years 915 8.77 89.94 0 77

This dataset have also been analyzed by Long et al. (2001) and is available from the Stata website http://www.

stata-press.com/data/lf2/couart2.dta. The mean number of articles is 1.69 and the variance is 3.71, a little more

than twice the mean (see Table 6). The data are over-dispersed. Results are showed in Tables 7 and 8. For both

distributions we consider: log(β) = β0 +
5

∑
i=1

βixi where xi are described in Table 6.

Table 7: Parameter estimates and standard errors for Negative Binomial and Discrete Lindley models.

Parameter Negative DLIS DLS 95% Conf. Int. 95% Conf. Int. 95% Conf. Int.
Binomial N. Binomial DLIS DLS

β0
0.2561 0.2529 0.5038

(-0.015,0.527) (-0.026,0.532) (0.220, 0.787)
(0.1386) (0.1425) (0.1446)

β1
-0.2164 -0.2159 0.2092

(-0.358,-0.074) (-0.362,-0.069) (0.060, 0.357)
(0.0727) (0.0747) (0.0758)

β2
0.1505 0.1504 -0.1471

(-0.010,0.311) (-0.015,0.316) (-0.315, 0.020)
(0.0821) (0.0844) (0.0857)

β3
-0.1764 -0.1761 0.1708

(-0.280,-0.072) (-0.283,-0.069) (0.063, 0.278)
(0.0531) (0.0545) (0.0549)

β4
0.01527 0.0156 -0.0154

(-0.055,0.085) (-0.057,0.088) (-0.089, 0.058)
(0.0360) (0.0371) (0.0376)

β5
0.02908 0.02926 -0.0292

(0.022,0.035) (0.022,0.036) (-0.036,-0.021)
(0.0035) (0.0036) (0.0037)

α
0.4416

(0.337,0.545)
(0.0530)

It is observed from the results in Table 7, that the DLIS distribution estimates are not very different from those

obtained assuming the negative binomial model, and both sets would led to the same conclusions and looking at the

standard errors, we see that both approaches to overdispersion lead to very similar estimated standard errors. However,

the LDS estimates, except for the sign, are basically the same of the others models. Now, looking regression coefficients,

we conclude that, in DLS distribution, β2, β4 are not significant; in DLIS distribution, β0, β2, β4 are not significant;

and, in negative binomial distribution, β0, β2, β4 are not significant (see confidence intervals in Table 7). Also, looking

the AIC (Akaike, 1974), AICc (Cavanaugh, 1997) and BIC (Bhat and Kumar, 2010) criterion introduced in Table 8,

they are, basically, the same, but the DLS model is better in terms of parsimony and goodness of fit.

Table 8: Goodness-of-fit measures.

Goodness-of-fit Negative DLIS DLS
Criteria Binomial

-2 Log Likelihood 3121.9 3123.0 3133.0
AIC (smaller is better) 3135.9 3135.0 3141.0
AICC (smaller is better) 3136.0 3135.1 3141.2
BIC (smaller is better) 3169.6 3164.0 3160.2

5.3 Application 3 (with covariates)

In this application, we considered the dataset analyzed by Deb and Trivedi (1997) and Liu and Cela (2008) to illustrate

just the application of discrete Lindley (DLIS), zero-inflated discrete Lindley (ZIDLIS) and Hurdle discrete Lindley
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(HDLIS) models in the presence of covariates (see, Remark 1). Its fit is compared to the Poisson, negative binomial,

zero-inflated Poisson and Hurdle Poisson models. For all distributions we consider: log(β) = β0 + ∑7
i=1 βixi and

logit (p) = α0 + ∑7
i=1 αixi where xi are describe in Table 9.

Table 9: Dataset: The number of hospital stays of 4406 respondents who were aged 66 or older and covered by Medicare
program.

Variable Description n Mean Variance Min Max

hosp # of hospital stays 4406 0.30 0.56 0 8
x1 1 if self-perceived health is excellent 4406 0.08 0.7 0 1
x2 1 if self-perceived health is poor 4406 0.13 0.11 0 1
x3 # of chronic conditions 4406 1.54 1.82 0 8
x4 age in years (divided by 10) 4406 7.4 0.40 6.6 10.9
x5 1 if the person is male 4406 0.40 0.24 0 1
x6 # of years of education 4406 10.29 13.98 0 18
x7 1 if the person is covered by private insurance 4406 0.78 0.17 0 1

Remark 1: In this application, we only used DLIS distribution since using DLS distribution we had computational

instability for the parameter estimations.

This dataset was originally obtained from National Medical Expenditure Survey (NMES) conducted in 1987 including

4406 respondents who were aged 66 or older and covered by Medicare program. The dataset description and summary

statistics are given in Table 9 and we can show that the variance of hosp is about two times of the mean, implying the

possibility of overdispersion.

Estimated coefficients of all models together with related statistics are listed in Tables 10 and 11. While Poisson

regression provides a baseline model for count data, the other models demonstrate the better fit when compared to the

basic Poisson regression model. The zero-inflated discrete Lindley model has the best fit when compared to the others

models.

Looking at the standard errors of all models, we see that both approaches to overdispersion lead to very similar

estimated standard errors and looking the AIC, AICc and BIC criterion, we conclude that the zero-inflated discrete

Lindley model is the best fitted model in terms of goodness of fit.

Table 10: Parameter estimates and standard errors for all models.

Parameter P NB DL HP ZIP HDL ZIDL

β0
-3.3290
(0.3397)

-3.7526
(0.4468)

-3.5168
(0.3761)

4.2294
(0.4889)

4.2660
(0.9712)

4.2294
(0.4889)

5.6076
(1.3472)

β1
-0.7234
(0.1756)

-0.6979
(0.1933)

-0.7134
(0.1809)

0.5826
(0.1991)

-0.3699
(0.7174)

0.5826
(0.1991)

-0.4987
(0.8369)

β2
0.6262
(0.0679)

0.6139
(0.0954)

0.6202
(0.0770)

-0.6953
(0.1073)

-0.5897
(0.1952)

-0.6953
(0.1073)

-0.8732
(0.3857)

β3
0.2645
(0.0183)

0.2894
(0.0265)

0.2739
(0.0211)

-0.3078
(0.0289)

-0.2801
(0.0624)

-0.3078
(0.0289)

-0.4955
(0.0994)

β4
0.1864
(0.0420)

0.2384
(0.0553)

0.2101
(0.0464)

-0.2750
(0.0606)

-0.4060
(0.1198)

-0.2750
(0.0606)

-0.6517
(0.1734)

β5
0.1032
(0.0563)

0.1539
(0.0730)

0.1244
(0.0620)

-0.1947
(0.0801)

-0.3348
(0.1624)

-0.1947
(0.0801)

-0.6514
(0.2317)

β6
-0.0002
(0.0079)

-0.0023
(0.0102)

-0.0013
(0.0087)

-0.0059
(0.0113)

-0.0194
(0.0221)

-0.0059
(0.0113)

0.0135
(0.0310)

β7
0.1087
(0.0693)

0.0939
(0.0905)

0.1026
(0.0766)

-0.0192
(0.0994)

0.2249
(0.1961)

-0.0192
(0.0994)

0.1797
(0.2834)

α
1.7667
(0.1605)

α0
-0.4818
(0.5626)

-0.3665
(0.5720)

-0.9664
(0.6871)

-0.6733
(0.5709)

α1
-0.9435
(0.4953)

-0.9200
(0.4585)

-1.0049
(0.5254)

-0.8980
(0.4147)

α2
0.3374
(0.1008)

0.3249
(0.1012)

0.3568
(0.1267)

0.3738
(0.1162)

α3
0.1427
(0.0297)

0.1277
(0.0339)

0.1529
(0.0375)

0.1105
(0.0335)

α4
-0.0108
(0.0683)

-0.0244
(0.0688)

0.0059
(0.0836)

-0.0375
(0.0687)

α5
-0.0382
(0.0923)

-0.0596
(0.0991)

-0.0411
(0.1124)

-0.1203
(0.1020)

α6
-0.0181
(0.0129)

-0.0125
(0.0135)

-0.0161
(0.0156)

0.0042
(0.0136)

α7
0.2592
(0.1140)

0.2292
(0.1140)

0.2595
(0.1375)

0.1690
(0.1198)

P: Poisson, NB: Negative Binomial, HP: Hurdle Poisson, ZIP: Zero-Inflated Poisson, DL: Discrete Lindley
HDL: Hurdle Discrete Lindley and ZIDL: Zero-Inflated Discrete Lindley

.
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(HDLIS) models in the presence of covariates (see, Remark 1). Its fit is compared to the Poisson, negative binomial,

zero-inflated Poisson and Hurdle Poisson models. For all distributions we consider: log(β) = β0 + ∑7
i=1 βixi and

logit (p) = α0 + ∑7
i=1 αixi where xi are describe in Table 9.

Table 9: Dataset: The number of hospital stays of 4406 respondents who were aged 66 or older and covered by Medicare
program.

Variable Description n Mean Variance Min Max

hosp # of hospital stays 4406 0.30 0.56 0 8
x1 1 if self-perceived health is excellent 4406 0.08 0.7 0 1
x2 1 if self-perceived health is poor 4406 0.13 0.11 0 1
x3 # of chronic conditions 4406 1.54 1.82 0 8
x4 age in years (divided by 10) 4406 7.4 0.40 6.6 10.9
x5 1 if the person is male 4406 0.40 0.24 0 1
x6 # of years of education 4406 10.29 13.98 0 18
x7 1 if the person is covered by private insurance 4406 0.78 0.17 0 1

Remark 1: In this application, we only used DLIS distribution since using DLS distribution we had computational

instability for the parameter estimations.

This dataset was originally obtained from National Medical Expenditure Survey (NMES) conducted in 1987 including

4406 respondents who were aged 66 or older and covered by Medicare program. The dataset description and summary

statistics are given in Table 9 and we can show that the variance of hosp is about two times of the mean, implying the

possibility of overdispersion.

Estimated coefficients of all models together with related statistics are listed in Tables 10 and 11. While Poisson

regression provides a baseline model for count data, the other models demonstrate the better fit when compared to the

basic Poisson regression model. The zero-inflated discrete Lindley model has the best fit when compared to the others

models.

Looking at the standard errors of all models, we see that both approaches to overdispersion lead to very similar

estimated standard errors and looking the AIC, AICc and BIC criterion, we conclude that the zero-inflated discrete

Lindley model is the best fitted model in terms of goodness of fit.

Table 10: Parameter estimates and standard errors for all models.

Parameter P NB DL HP ZIP HDL ZIDL

β0
-3.3290
(0.3397)

-3.7526
(0.4468)

-3.5168
(0.3761)

4.2294
(0.4889)

4.2660
(0.9712)

4.2294
(0.4889)

5.6076
(1.3472)

β1
-0.7234
(0.1756)

-0.6979
(0.1933)

-0.7134
(0.1809)

0.5826
(0.1991)

-0.3699
(0.7174)

0.5826
(0.1991)

-0.4987
(0.8369)

β2
0.6262
(0.0679)

0.6139
(0.0954)

0.6202
(0.0770)

-0.6953
(0.1073)

-0.5897
(0.1952)

-0.6953
(0.1073)

-0.8732
(0.3857)

β3
0.2645
(0.0183)

0.2894
(0.0265)

0.2739
(0.0211)

-0.3078
(0.0289)

-0.2801
(0.0624)

-0.3078
(0.0289)

-0.4955
(0.0994)

β4
0.1864
(0.0420)

0.2384
(0.0553)

0.2101
(0.0464)

-0.2750
(0.0606)

-0.4060
(0.1198)

-0.2750
(0.0606)

-0.6517
(0.1734)

β5
0.1032
(0.0563)

0.1539
(0.0730)

0.1244
(0.0620)

-0.1947
(0.0801)

-0.3348
(0.1624)

-0.1947
(0.0801)

-0.6514
(0.2317)

β6
-0.0002
(0.0079)

-0.0023
(0.0102)

-0.0013
(0.0087)

-0.0059
(0.0113)

-0.0194
(0.0221)

-0.0059
(0.0113)

0.0135
(0.0310)

β7
0.1087
(0.0693)

0.0939
(0.0905)

0.1026
(0.0766)

-0.0192
(0.0994)

0.2249
(0.1961)

-0.0192
(0.0994)

0.1797
(0.2834)

α
1.7667
(0.1605)

α0
-0.4818
(0.5626)

-0.3665
(0.5720)

-0.9664
(0.6871)

-0.6733
(0.5709)

α1
-0.9435
(0.4953)

-0.9200
(0.4585)

-1.0049
(0.5254)

-0.8980
(0.4147)

α2
0.3374
(0.1008)

0.3249
(0.1012)

0.3568
(0.1267)

0.3738
(0.1162)

α3
0.1427
(0.0297)

0.1277
(0.0339)

0.1529
(0.0375)

0.1105
(0.0335)

α4
-0.0108
(0.0683)

-0.0244
(0.0688)

0.0059
(0.0836)

-0.0375
(0.0687)

α5
-0.0382
(0.0923)

-0.0596
(0.0991)

-0.0411
(0.1124)

-0.1203
(0.1020)

α6
-0.0181
(0.0129)

-0.0125
(0.0135)

-0.0161
(0.0156)

0.0042
(0.0136)

α7
0.2592
(0.1140)

0.2292
(0.1140)

0.2595
(0.1375)

0.1690
(0.1198)

P: Poisson, NB: Negative Binomial, HP: Hurdle Poisson, ZIP: Zero-Inflated Poisson, DL: Discrete Lindley
HDL: Hurdle Discrete Lindley and ZIDL: Zero-Inflated Discrete Lindley

.
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Table 11: Goodness-of-fit measures.

P NB HP ZIP DL HDL ZIDL
-2 Log Likelihood 6091.9 5713.1 5758.4 5755.9 5832.8 5699.7 5685.1
AIC (smaller is better) 6107.9 5731.1 5790.4 5787.9 5848.8 5731.7 5717.1
AICC (smaller is better) 6108.0 5731.2 5790.6 5788.0 5848.8 5731.8 5717.2
BIC (smaller is better) 6159.0 5788.6 5892.7 5890.1 5899.9 5833.9 5819.3
P: Poisson, NB: Negative Binomial, HP: Hurdle Poisson, ZIP: Zero-Inflated Pois-
son, DL: Discrete Lindley HDL: Hurdle Discrete Lindley and ZIDL: Zero-Inflated
Discrete Lindley

.

6 Conclusion

In this paper, considering a discretization method based on an infinite series, we introduce an alternative discrete

Lindley distribution. Some characteristics and properties of this distribution were presented and studied which it

was found that it can be used in the analysis of data with overdispersion. Monte Carlo studies showed that the

biases and mean squared errors of this distribution are asymptotically non-biased and has small values compared to

discrete Lindley distribution obtained by survival function considered in Bakouch et al. (2014) and has great coverage

probabilities ranging from 0.94 to 0.96 and the coverage length goes to zero when the sample size increases. In the

considered applications, the DLIS distribution had a better or equivalent fit compared to other distributions considered

in the applications leading to the conclusion that this distribution could be a good alternative for overdispersed count

data in presence or not of covariates, especially, it is better than DLS distribution in computational aspects (simulation

and estimation), equations and goodness-of-fit.
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(HDLIS) models in the presence of covariates (see, Remark 1). Its fit is compared to the Poisson, negative binomial,

zero-inflated Poisson and Hurdle Poisson models. For all distributions we consider: log(β) = β0 + ∑7
i=1 βixi and

logit (p) = α0 + ∑7
i=1 αixi where xi are describe in Table 9.

Table 9: Dataset: The number of hospital stays of 4406 respondents who were aged 66 or older and covered by Medicare
program.

Variable Description n Mean Variance Min Max

hosp # of hospital stays 4406 0.30 0.56 0 8
x1 1 if self-perceived health is excellent 4406 0.08 0.7 0 1
x2 1 if self-perceived health is poor 4406 0.13 0.11 0 1
x3 # of chronic conditions 4406 1.54 1.82 0 8
x4 age in years (divided by 10) 4406 7.4 0.40 6.6 10.9
x5 1 if the person is male 4406 0.40 0.24 0 1
x6 # of years of education 4406 10.29 13.98 0 18
x7 1 if the person is covered by private insurance 4406 0.78 0.17 0 1

Remark 1: In this application, we only used DLIS distribution since using DLS distribution we had computational

instability for the parameter estimations.

This dataset was originally obtained from National Medical Expenditure Survey (NMES) conducted in 1987 including

4406 respondents who were aged 66 or older and covered by Medicare program. The dataset description and summary

statistics are given in Table 9 and we can show that the variance of hosp is about two times of the mean, implying the

possibility of overdispersion.

Estimated coefficients of all models together with related statistics are listed in Tables 10 and 11. While Poisson

regression provides a baseline model for count data, the other models demonstrate the better fit when compared to the

basic Poisson regression model. The zero-inflated discrete Lindley model has the best fit when compared to the others

models.

Looking at the standard errors of all models, we see that both approaches to overdispersion lead to very similar

estimated standard errors and looking the AIC, AICc and BIC criterion, we conclude that the zero-inflated discrete

Lindley model is the best fitted model in terms of goodness of fit.
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Table 11: Goodness-of-fit measures.

P NB HP ZIP DL HDL ZIDL
-2 Log Likelihood 6091.9 5713.1 5758.4 5755.9 5832.8 5699.7 5685.1
AIC (smaller is better) 6107.9 5731.1 5790.4 5787.9 5848.8 5731.7 5717.1
AICC (smaller is better) 6108.0 5731.2 5790.6 5788.0 5848.8 5731.8 5717.2
BIC (smaller is better) 6159.0 5788.6 5892.7 5890.1 5899.9 5833.9 5819.3
P: Poisson, NB: Negative Binomial, HP: Hurdle Poisson, ZIP: Zero-Inflated Pois-
son, DL: Discrete Lindley HDL: Hurdle Discrete Lindley and ZIDL: Zero-Inflated
Discrete Lindley

.

6 Conclusion

In this paper, considering a discretization method based on an infinite series, we introduce an alternative discrete

Lindley distribution. Some characteristics and properties of this distribution were presented and studied which it

was found that it can be used in the analysis of data with overdispersion. Monte Carlo studies showed that the

biases and mean squared errors of this distribution are asymptotically non-biased and has small values compared to

discrete Lindley distribution obtained by survival function considered in Bakouch et al. (2014) and has great coverage

probabilities ranging from 0.94 to 0.96 and the coverage length goes to zero when the sample size increases. In the

considered applications, the DLIS distribution had a better or equivalent fit compared to other distributions considered

in the applications leading to the conclusion that this distribution could be a good alternative for overdispersed count

data in presence or not of covariates, especially, it is better than DLS distribution in computational aspects (simulation

and estimation), equations and goodness-of-fit.
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6 Conclusion

In this paper, considering a discretization method based on an infinite series, we introduce an alternative discrete

Lindley distribution. Some characteristics and properties of this distribution were presented and studied which it

was found that it can be used in the analysis of data with overdispersion. Monte Carlo studies showed that the

biases and mean squared errors of this distribution are asymptotically non-biased and has small values compared to

discrete Lindley distribution obtained by survival function considered in Bakouch et al. (2014) and has great coverage

probabilities ranging from 0.94 to 0.96 and the coverage length goes to zero when the sample size increases. In the

considered applications, the DLIS distribution had a better or equivalent fit compared to other distributions considered

in the applications leading to the conclusion that this distribution could be a good alternative for overdispersed count

data in presence or not of covariates, especially, it is better than DLS distribution in computational aspects (simulation

and estimation), equations and goodness-of-fit.
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