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Abstract 

 In this paper, the statistical analysis of the effect of nanoparticles volume fraction on one of the most important thermal characteristics 

turbulent flow of nanofluid i.e. convection heat transfer coefficient, inside a circular tube with uniform wall heat flux is investigated 

numerically. Also, water as a base fluid and Al2O3 as suspended particles with a diameter of 36 nm are considered. Heat transfer 

characteristics are computed using the solution of elliptic equations based on discrete the finite volume method and the second order upwind. 

The relationship between pressure and velocity using SIMPLEC algorithm is established. In this study, the variation of volume fraction of 

nanoparticles is assumed in the range of 0 to 6%. The best probability distribution function of the heat transfer parameters are selected using 

chi square test that various probability distribution such as: Gamma, Normal, Lognormal, Gumbel, and Frechet are evaluated based on 

numerical analysis of tube flow. After reviewing the results, it was found that with increasing volume fraction of nanoparticles, the 

convective heat transfer coefficient increases. On the other hand, the convective heat transfer coefficients with regard to variation of volume 

fraction of nanoparticles follow Gumbel Max probability distribution function.  
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1 Introduction 

he convective heat transfer coefficient is 

one of the most important thermal 

parameters of fluid. So far, different 

methods in order to increase the heat transfer 

have been proposed, that the method of adding 

metal and nonmetal particles in different sizes, 

especially in nanometer scale to base fluid was 

highly regarded [1-3]. Researchers have studied 

the nanofluid issue both of experimentally and 

numerically method [4-5]. Minea [6] studied 

turbulent convective heat transfer in a two-

dimensional micro tube numerically. She used 

from water–Al2O3 nanofluids with different 

volume fractions ranged from 1% to 4% and 

showed that convective heat transfer coefficient 

of nanofluid is greater than of the base fluid. 

Farajollahi et al [7] investigated turbulent heat 

transfer of nanofluids in a shell and tube heat 

exchanger experimentally. They concluded that 

with adding of nanoparticles to the base fluid, 

the characteristics of heat transfer enhance 

remarkably. Dawood et al [8] laminar mixed 

convective heat transfer of different nanofluids in 

an elliptic annulus investigated numerically. 

They showed that the Nusselt number increased 

as the nanoparticle volume fraction increased. 

Saha and Paul [9] numerically examined the 

turbulent forced convection using Al2O3–water 

and TiO2–water nanofluids in a horizontal 

circular tube. They showed that TiO2–water 

nanofluid is the most energy efficient coolant 

than Al2O3–water nanofluid. Kaminski and 

Ossowski [10] predicted of the effective 

parameters of the nanofluids using the 

generalized stochastic perturbation method. 

They used of probabilistic and statistical 

methods for numerical determination of the 

effective physical properties of nanofluids. 

There's Computational experiments showed a 

very good agreement of the probabilistic 

characteristics computed using analytical, 

perturbation and simulation methods. Bianco et 

al [11] studied of turbulent convection heat 

transfer of nanofluid in circular tubes by using 

the mixture model. They resulted that with 

increasing of nanoparticles volume fraction, the 

Nusselt number increases. Khanafer and Vafai 

[12] investigated of critical combination of 

thermophysical characteristics of nanofluids. 

They realized that experimental results for the 

effective thermal conductivity and viscosity 

reported by various authors are in disagreement. 

They presented correlations for effective thermal 

conductivity and viscosity of nanofluids. 

Corcione [13] presented a semi-empirical model 

for predicting the effective dynamic viscosity of 

nanofluids. His equation is accurate for both 

numerical simulation purposes and thermal 

design. Kamyar et al [14] studied application of 

computational fluid dynamics for nanofluids. 

They review and summarize the numerical 

studies performed in this area including 

conventional numerical methods as well as the 

new Lattice Boltzmann. They found that many of 

these computational simulations are in good 

agreement with experimental results. Tahir and 

Mital [15] investigated numerically laminar 

forced convective heat transfer in developing 

flow for water/aluminum oxide nanofluid in a 

circular channel under uniform heat flux on the 

wall. They investigated effect of three 

independent variables (particle diameter, the 

Reynolds number and volume fraction of 

nanoparticles) on the convective heat transfer 

coefficient. They predicted that in terms of 

effectiveness, the most significant variable is 

Reynolds number and volume fraction of 

nanoparticles is the least important variable.  

In this paper, useful the probability 

distribution functions such as Gamma Normal, 

log-normal, Gumbel, and Frechet are evaluated 

for the turbulent forced convective heat transfer 

coefficient of water /Al2O3 nanofluid, based on 

variation of nanoparticles volume fraction are 

investigated in a circular copper tube under heat 

flux at the top of tube and insulation in bottom. 

The maximum likelihood method is used to 

determine the parameters of the probability 

distribution functions. The best distribution 

function is chosen using Chi-square test. The 

parameters of the distribution function and 

statistical characteristics such as the first moment 

(Mean), the second moment (Standard 

Deviation), the third moment (Skewness), and 

T 
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fourth moments (Kurtosis) are compared in both 

the developed region and the developing region 

of nanofluid flow.  

2 The Flow Modeling  

A tube with circular cross section of copper is 

considered to evaluate the statistical analysis of 

turbulent flow convection heat transfer which 

the pipe geometric and boundary condition in 

Fig. 1. The length of pipe is 1000 millimeters, the 

inner and outer radius are 10 and 11 millimeters, 

respectively. Upper half tube with heat flux 

42×104 W/m2 and the bottom half of the tube is 

insulation. Turbulent flow of water–Al2O3 

nanofluid is considered with different volume 

fractions ranged from 0 to 6% and inlet 

temperature of 293K and inlet velocity of Vo. 

 

Figure 1:  Schematic geometric of tube 

 

2.1 Governing Equations 

The two phase mixture model for pipe flow 

analysis and calculation of heat transfer 

characteristics are used that the governing 

equations described as follows: 

 

2.1.1 Continuity equation  

Continuity equation for a multi-phase flow is 

given by the following expression [16]: 

 

eff m 0  .( )V  (1) 

Where Vm is mean axial velocity and ρm is 

mixture of density which is defined as follows 

[17]: 
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Where ϕk is the volume fraction of phase k and 

Vk is mean axial velocity of phase k and ρk is 

density of phase k.  

 

2.1.2 Momentum equation 

Momentum equation of multi-phase flow in a 

pipe is as follows [16]: 

   
n

m m m m t k k dr,k dr,k

k=1

. ρ . τ τ . ρ
 

       
 
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In the above equation, n is the number of 

phases, and P is the pressure of the mixture. Vdr, k 

is the rate leads for phase of k which defined as 

[16]: 

dr,k k m= -V V V  (5) 

In the Eq (4), τ and τt are the shear stress and 

turbulent shear stress, respectively. They are 

calculated by the following relations. 

eff m  V  (6) 
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Where  μeff is effective viscosity of nanofluids, 

which is depended on the physical properties of 

nanofluids.  

The relative velocity (Vpf) is defined based on 

the relative speed of the second phase (particles, 

p) in the first phase (base fluid, f) as follows [11]: 

pf p f =  -V V V
 (8) 

Based on Eq(8), relationship between the slip 

velocity an drift velocity is defined as [11]: 

k
dr,p pf fk

k=1 m

ρ
   

ρ

n
k V V V

 

(9) 

The relative velocity between the two phases 

is calculated by Mannien relation [18]. 

 2
p mp p

pf 

f drag p

ρ - ρρ d
=  a

18μ f ρ
 V

 

(10) 

Where ρp is nanoparticle density, dp is diameter 

of the nanoparticles and μf is the fluid viscosity 

(water) and fdrag is drag function that are 

calculated as follows [19]: 
0.687

p p

drag

p p

 1+0.15Re     ,   Re 1000
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   0.0183 Re        ,      Re >1000 
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(11) 

The acceleration (a) in Eq. (10) and Rep in Eq. 

(11) are defined as: 

 m ma = g    . V V  (12) 

nf
nf

nf

V D
Re  =

ν
 (13) 

In which, D is the pipe diameter, Vnf is speed 

nanofluids, 𝑣nf is kinematic viscosity of 
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nanofluids and g is the acceleration of gravity 

(9.807 m/s2). 

 

2.1.3. The energy equation 

The energy equation is solved for a multi-

phase turbulent flow which is defined as follows 

[16]: 

   
n

k k k k p m

k=1

. V ρ H P . λ T  C ρ νt
 

       
 
  

(14) 

Where Hk is enthalpy of kth phase, P is the 

pressure, T is the temperature, Cp is specific heat 

capacity, 𝑣 is rapidly oscillating and t is 

perturbations of the parameter. Turbulent flow is 

modelled based on k-ε equation [20]. 
 

2.2 Physical properties of nanofluids 

The effective density of nanofluids is 

calculated by following equation [21]. 

 eff f pρ = 1- ρ + ρ   (15) 

Where φ is the volume fraction of nanoparticles 

and specific heat capacity of nanofluids in Eq. 

(14) can be calculated as [21]: 

 
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 

 
(16) 

Where (Cp)f and (Cp)p are the specific heat 

capacity of the fluid (water) and nanoparticle 

(aluminum oxide) respectively. Effective thermal 

conductivity Eq. (14) is considered as [22]. 
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(17) 

 

 

Where df and dp are the particle diameter base 

fluid (0.275 nm) and the diameter of the 

nanoparticles (36 nm) respectively. λf and λp are 

named the fluid conductivity (o.6028 w/m k) and 

the conductivity of nanoparticles (35 w/m k), 

respectively. Dimensionless parameters such as 

Pr (Prandtl number) and Re (Reynolds number) 

in Eq (17) are defined as follows: 

f

f f

μ
Pr =  

ρ α
 (18) 

f b

2

bf

ρ K T
Re = 

3πμ L
 (19) 

In which Lbf (m) is called over the free path 

and its value for water at laboratory temperature 

(25 °C) is equal to (0.17 nm). Kb is Boltzmann 

constant (  3

b

2= 1.3807 10 J KK  ) [22], μ is the 

fluid viscosity which is defined as: 
B

T-C
fμ  = A 10    

(20) 

 

Where the constants of 

 5A= 2.414 10   Pa.s ,.  0B = 247 K  and  0C = 140 K   

The effective viscosity of the nanofluid (μeff) in 

Eq (6) is depended on temperature (T), the 

average diameter of the nanoparticles dp, 

nanoparticle volume fraction (ϕ), nanoparticle 

density ρp and the physical properties of base 

fluid. μeff is calculated by following relation [23]: 
2

P B P
eff f

ρ V d
μ  = μ  +   

72Cδ
 

(21) 

In which VB is Brownian velocity and δ is 

boundary layer thickness which are obtained as 

[23]. 
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Where: 

1 2

3 4

0.000001133, 0.000002771

0.00000009, 0.000000393

c c

c c

   

  
 

3 Numerical solution 

In this paper, heat transfer characteristics are 

computed using the solution of elliptic equations 

based on discrete the finite volume method and 

the second order upwind. The relationship 

between pressure and velocity using SIMPLEC 

algorithm is established. This algorithm is more 

appropriate for incompressible flows into the 

tube [16]. The many of samples to generate data 

for the statistical properties of turbulent flow 

forced convection heat transfer of nanofluids 

parameters. The nanoparticles volume fraction is 

simulated in the range of 0 to 6%. The results of 

convective heat transfer coefficient parameter to 

the nanoparticles volume fraction are shown in 

Figures 2 and 3. 
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Figure 2: Convective heat transfer coefficient of 

base fluid in the tube length  
 

 

In Figure 2, the convective heat transfer 

coefficient of turbulent flow for base fluid 

(water) is drawn along the tube length. As can be 

seen, the changes this parameter in the first part 

of the tube (developing region) is more intense 

than the end part of the tube (developed region). 

In Figure 3, the convective heat transfer 

coefficient is drawn in terms of volume fraction 

of nanoparticles ranging from 0.3 to 6 percent in 

different areas of tube length. As can be seen, 

with increasing volume fraction of nanoparticles 

the convective heat transfer coefficient increased 

which is due to thermo-physical properties of the 

fluid is improved. 

4 The method of statistical analysis 

The main of the present paper is the 

evaluation of statistical properties such as the 

probability distribution functions and their 

parameters for turbulent forced convective heat 

transfer coefficient variable with respect to the 

volume fraction of nanoparticles in the range of 0 

to 6 percent. For this purpose, the parameters of 

probability distribution function based on 

maximum likelihood method and the probability 

distribution function is calculated based on the 

Chi-square test. 

 

4.1 estimating the parameters of the 

probability distribution function 

It is assumed that the random variable X i.e. 

h, has a continuous probability density function 

fx(x). The probability distribution function has a 

number of unknown parameters. The calculation 

of the unknown parameters for a distribution 

function is main purpose for the variable X. The 

maximum likelihood method is used to 

determine the unknown parameters of PDF [24]. 

Therefore, the probability density distribution 

function fx(x) of the heat transfer data for 

observations is defined based on the maximum 

likelihood procedure as [25, 26]: 

     



n

i
ixnX xfxxxfL

1

;;,...,, 21   (25) 

 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3: Convective heat transfer coefficient of 

nanofluid in the tube length for different volume 

fraction of nanoparticles 

 

Where L(θ) is the likelihood of probability 

distribution function with the parameters θ. The 

unknown parameters are calculated based on the 

maximization of Eq. (25). It is clear that equation 

is obtained for every parameter of probability 

distribution function. Solution of the equations is 

leaded to determine the unknown parameters of 

the probability density distribution function [25]. 

Consequently, we will have: 
      T

n

LLL
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
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
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


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4.2 Select the best distribution function 

The best probability distribution function 

which its parameters are calculated based on 

maximum likelihood estimator, is selected using 

chi- square statistic. Hence, the statistical data of  

the heat transfer are classified with K classes as 

[24]: 

2K 1  Log N  (27) 

Where N is the number of data and K is the 

number of classes. Chi-square value is calculated 

as follows: 

2

i i
2

i

i=1

(O E )

χ
E

k




  

(28) 

In which, Oi is the observed data based on 

numerical analysis and Ei is defined for class ith 

as F(x2) -F(x1). In which, F is the cumulative 

distribution function for lower band (x1) and 

upper band (x2) of class. The minimum value of 

chi- square statistic shows that the data more 

confidence with the estimated data by PDF. 

 

 

5. Evaluation of the results of the 

statistical analysis 

statistical properties of the heat transfer 

variables are evaluated based on the data 

generation from the numerical analysis of 

nanofluid in tube. The parameters of several 

PDFs are computed at various points along the 

tube which are located in flow developing and 

flow developed.  
 

5.1 statistical properties of heat transfer 

variables 

According to the results from numerical 

analysis of flow in tube, statistical properties of 

the heat transfer variables are approximated for 

5 location of tube length. The statistical 

properties are included as 
 

5.1.1 mean, which is calculated as follows 

[26]: 
n

i

i=1

x

X=
n


 

(29) 

Where n = 21 and Xi is the convective heat 

transfer coefficient values in developed and 

developing regions of the flow tube. 

5.1.2 Standard deviation: It is calculated as 

follows [26]: 

 
n 2

i

i=1

x x

S=
n 1






 

(30) 

5.1.3 The coefficient of variation: it is 

defined by the ratio of standard deviation to 

mean: 

S
Cov =

X
 

(31) 

5.1.4 skewness: the deviation of the 

probability distribution function of data is 

shown with respected to the normal state which 

is tended to the right or left. It is calculated as 

follows: 

  

3
n

i

i=1

x xn
Sk =  

n 1 n 2 S

 
     

  
(32) 
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If the value of skewness is equal to 3, In this case 

the data follow a normal function. If the 

skewness is greater than 3, the data probability 

distribution is tended to the left and the 

probability distribution function is tended to 

right when, skewness is smaller than 3.  

5.1.5 Kurtosis: it showed the steepness of 

the probability distribution function for the data 

with respected to the normal probability 

distribution function: 
4

1

2
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( 1)( 2)( 3)
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

 
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(33) 

 

If the kurtosis value is zero, the probability 

distribution function of the data is followed with 

the normal probability distribution function. It is 

sharper than normal probability distribution 

function when kurtosis is negative. When 

kurtosis is positive, the probability distribution 

function of data is smoother than the normal 

PDF. 

 

Table 1: the statistical properties of convective heat transfer coefficient in different locations of tube 

Location of tube 

(meter) 
0.04 0.1 0.4 0.7 0.9 

Mean 25201 23435 24249 24582 24676 

standard deviation 2407 2280 2418 2471 2486 

coefficient of 

variation 
0.0955 0.0973 0.0997 0.1005 0.1007 

Kurtosis 3.2525 3.2385 3.084 3.0474 3.0396 

Skewness 1.4124 1.4089 1.3692 1.3598 1.3577 
 

 

According to statistical methods, the 

statistical properties of convective heat transfer 

coefficient parameter data is presented in Table 

1. As seen in this table, the statistical properties 

of the convective heat transfer coefficient data 

are listed along five point of the tube (i.e. 0.04, 

0.1, 0.4, 0.7 and 0.9) and compared. According to 

the results presented in Table 1 it is clear that the 

coefficient of variation in the range from 0.04 to 

0.4 meters of the tube length are significant 

changes compared to the range from 0.4 to 9.0 

meters of the tube length. By comparing the 

mean and standard deviation of data, the above 

results are also specified. 

To investigate the kurtosis of data the 

probability distribution function for the data be 

should compared with the normal probability 

distribution function. As seen in this table, with 

regard to the kurtosis value of data is greater 

than zero, therefore the probability distribution 

function of data is smoother compared to normal 

probability distribution function. On the other 

hand, the probability distribution function of the 

convective heat transfer coefficient in the range 

from 0.04 to 0.1 is smoother than the range of 0.7 

to 0.9. 

 
Figure 4: Appropriate probability distribution 

function of the convective heat transfer 

coefficient in Z = 0.04 
 

The next issue that should be investigated, 

the statistical property is skewness. With regard 

to the skewness value of data shown in Table 1 is 

greater than 3 therefor, the data probability 

distribution function of the convective heat 

transfer coefficient in term of nanoparticles 

volume fraction is tended to the right.  
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5.2 Appropriate probability distribution of 

heat transfer variables 

The best probability distribution function of the 

convective heat transfer of turbulent flow heat 

transfer nanofluids is determined in a circular 

tube using chi-square tests. The best probability 

distribution function is selected from known functions 

including Gamma, Normal, Log-normal, 

Gumbel, and Frechet. This two-parameter 

probability distribution functions are defined as 

follows: 
 

5.2.1 Normal probability distribution 

function 

This probability distribution function for variable 

convective heat transfer coefficient is defined as 
follows: 

 
2

1 h
f h  = exp (h) 2  

2


 



  
  

   

 
 

(34) 

In the above equation, h is the convective heat transfer 

coefficient. Also,   and   are continuous scale 

parameter and continuous location parameter, 

respectively.  

 

5.2.2 Lognormal probability distribution 

function 

This probability distribution function for variable 

convective heat transfer coefficient is defined as 

follows: 

 
2

1 ln(h)
f h  = exp (h) 2  

2


 



  
  
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(35) 

 

In this equation also, h is the convective heat transfer 

coefficient. Also,   and   are continuous 

parameters. 

  

5.2.3 Gamma probability distribution 

function 
Gamma probability distribution function for variable 

convective heat transfer coefficient is expressed as 
follows: 

     
α-1 αh

f h  = h exp β α
β

  
   
  

 
 

(36) 

In the Eq (36), h is the convective heat transfer 

coefficient and α  and β  are continuous shape 

parameter and continuous scale parameter, 

respectively. 

  

 
Figure 5: Appropriate probability distribution 

function of the convective heat transfer 

coefficient in Z = 0.1 
 

5.2.4 Frechet probability distribution 

function 
Frechet probability distribution function for variable 

convective heat transfer coefficient is expressed as 

follows: 

 
α+1 α

α β β
f h  = exp  

β h h

    
    

     

 

 

(37) 

In the Eq (37), h is the convective heat transfer 

coefficient and α  and β  are continuous shape 

parameter and continuous scale parameter, 

respectively.  

 

 
Figure 6: Appropriate probability distribution 

function of the convective heat transfer 

coefficient in Z = 0.4 
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Figure 7: Appropriate probability distribution 

function of the convective heat transfer 

coefficient in Z = 0.7 

 

5.2.5 Gumbel Max probability distribution 

function 
Gumbel Max probability distribution function for the 

convective heat transfer coefficient is expressed as 

follows: 

 
1 h h

f h  = exp exp  
 

  

      
       
     

 

(38) 

 

 
Figure 8: Appropriate probability distribution 

function of the convective heat transfer 

coefficient in Z = 0.9 
 

Based on the above equation, h is the convective heat 

transfer coefficient and  ,   are continuous scale 

parameter and continuous location parameter of 

Gumbel Max probability distribution function, 

respectively.  In Figures (4) to (8) probability 
distribution functions of the convective heat transfer 

coefficient data for nanoparticles volume fraction in 

the range of 0 to 6 percent is drawn along five point 

of the tube (i.e. 0.04, 0.1, 0.4, 0.7 and 0.9). 
 

 
Figure 9: Comparing the Gumbel Max 

probability distribution function for convective 

heat transfer coefficient in different parts of the 

tube 
 

 
Figure 10: Comparing the Gumbel Max 

probability distribution function for convective 

heat transfer coefficient in different parts of the 

tube and show it's mode. 
 

As is clear from these figures, according to the 

chi-square test, the best of probability 

distribution function for the convective heat 

transfer coefficient in all location of tube length 

is obtained the Gumbel Max probability 

distribution function. For this purpose, 

parameters of this probability distribution 

function are given in Table 2. The values of   

and   are calculated in parts of the developed 

and developing region of flow. Based on the 

results in Table 2, as seen, the range from 0.04 to 

0.7 of tube length, continuous scale parameter 

( ) of the probability distribution function is 

shown changes significantly. But, there is not 

shown significant changes in the range from 0.7 

to 0.9 of tube length. According to the Figures (2) 

and (3), it is shown that with increasing volume 

fraction of nanoparticles, the amount of 

development is pulled to the end of the tube that 

the amount of Table 2 also, states this issue. 
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Table.2. continuous scale and continuous location parameters of the probability distribution function 

for the convective heat transfer coefficient 

Location of tube 

(meter) 
0.04 0.1 0.4 0.7 0.9 

  
1876.526 

1778.1

59 

1885.3

95 

1926.6

8 

1938.3

97 
μ  24118.78

4 

22409.

493 

23160.

758 

23470.

418 

23558.

055 
 

 

According to the results from in Table 3, the 

Gumbel Max probability density function for the 

turbulent forced convection heat transfer 

coefficient in different parts of the tube length is 

shown in Figure 9. As in Figures (2) and (3) is 

observed, the amount of the convective heat 

transfer coefficient at the beginning of the tube, 

in developing region is high. Then is reduced to 

a minimum and again increased. Finally in 

developed region will reach to a fixed amount. 

This issue also is observed in Figures (9) and 

(10). As is clear, by increasing the length of tube, 

the mode of probability distribution function is 

shown changes significantly in the range from 0 

to 0.7 of tube length and then remains constant 

in the range from 0.7 to 0.9 of tube length. Based 

on the Figure 10, the amount of convective heat 

transfer coefficient in this area is result about 

23500
 2

W m .k
.Therefore, it can be concluded 

that for changes in volume fraction of the 

nanoparticles in the range of 0 to 6 percent, the 

mode of Gumbel Max distribution for the 

convective heat transfer coefficient is obtained 

about 23500
 2

W m .k
. 

The maximum difference between the mode 

value of the probability density functions is 

observed in interval of the undeveloped region 

(range of 0.04 to 0.1). But, the difference between 

the mode density functions for developed flow 

(range of 0.7 to 0.9) is not considerable. Also, 

based on the Figure 9 and 10 it is clear that 

skewness of this functions are tended to the right 

that is agreement with the results of Table 1. 

7 Conclusion 

In this paper, the statistical analysis of the 

effect of nanoparticles volume fraction on 

turbulent forced convective heat transfer 

coefficient is investigated in a circular tube with 

water–Al2O3 nanofluid. Uniform heat flux at the 

top and insulation at the bottom of the tube are 

assumed. In the studied tube flow, the heat 

transfer parameters are numerically evaluated 

based on various volume fraction of 

nanoparticles in the range of 0 to 6% with a 

constant value of the nanoparticle diameter (i.e. 

dp=36nm) and Reynolds number of 5×104. The 

summary of statistical results which are obtained 

based on numerical simulation of the flow tube 

for heat transfer parameters, are summarized as 

1. The parameters of the probability 

distribution functions are shown 

insignificant Changes for the heat 

transfer coefficient in the range of 0.7 to 

0.9 tube length.  

2. The mode of probability distribution for 

the heat transfer coefficient is extracted 

about 23500  2
W m .k based on the 

volume fraction of nanoparticles in the 

range of 0 to 6%. 

3. The convective heat transfer coefficient 

with respect to increase the volume 

fraction of nanoparticles is increased. 

The extreme value probability 

distribution function can be applied to 

define the probabilistic characteristics of 

the heat transfer turbulent nanofluid. 

Therefore, the Gumbel Max probability 

density functions can be used for 

convective heat transfer coefficient.  

4. The convective heat transfer coefficient 

data is followed with Gumbel Max 

distribution function which is tended to 

the right.  

5. Statistical results of development flow 

are not significant different but, the 

mode of heat transfer parameters are 

shown significant changes in the 

undeveloped region. 
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