
371 

 

 

Recebido: dia/mês/ano Aceito: dia/mês/ano 

 

Ciência e Natura, v. 37 Part  2  2015, p. 371−379 

ISSN impressa: 0100-8307  ISSN on-line: 2179-460X 

 

Providing a New Approach for Modeling and Parameter 

Estimation of Probability Density Function of Noise in Digital 

Images  
 

 

Hanif Yaghoobi1 , Keivan Maghooli2 , Alireza Ghahramani Barandagh 3,*  

 
1,2  Department of Biomedical Engineering, Science and Research Branch, Islamic Azad 

University, Tehran, Iran  
3 youngh Researchers and Elite Club,Tabriz branch,Islamic Azad University,Tabriz,Iran  

 
Abstract 

 
The main part of the noise in digital images arises when taking pictures or transmission. There is noise in the images captured 

by the image sensors of the real world. Noise, based on its causes can have different probability density functions. For example, such 

a model is called the Poisson distribution function of the random nature of photon arrival process that is consistent with the 

distribution of pixel values measured. The parameters of the noise probability density function (PDF) can be achieved to some extent 

the properties of the sensor. But, we need to estimate the parameters for imaging settings. If we assume that the PDF of noise is 

approximately Gaussian, then we need only to estimate the mean and variance because the Gaussian PDF with only two parameters 

is determined. In fact, in many cases, PDF of noise is not Gaussian and it has unknown distribution. In this study, we introduce  a 

generalized probability density function for modeling noise in images and propose a method to estimate its parameters. Because the 

generalized probability density function has multiple parameters, so use common parameter estimation techniques such as 

derivative method to maximize the likelihood function would be extremely difficult. In this study, we propose the use of evolutionary 

algorithms for global optimization. The results show that this method accurately estimates the probability density function 

parameters. 
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1 Introduction 

mage noise reduction is one of the 

most important steps in many image 

processing applications. 

Common approach to noise reduction and 

restoration is the use of various filters 

such as morphological filters. These filters 

are suitable for certain types of noise and 

adjust to them was not possible to 

eliminate other noises. Median filter is 

able to remove isolated noise point apart 

as well as linear noise apart from each 

other, while at the edges of the image will 

not change. In this type of filter is 

considered to be windows to the (2k + 1) * 

(2k + 1) or in the form of a cross and the 

center of each pixel in the image is 

shifted. In this way, the values level in a 

window arranged in order from small to 

large and middle of Central would be as 

the amount of gray level. Among the 

advantages of median filter is the ability 

of the Impulse noise cancelling. But it 

does not have the ability to reduce 

Gaussian noise as well. Another 

advantage of this filter is that this does 

not create new value of brightness (gray 

level) in the image. But it is a major 

weakness in the displacement of the 

edges in the image to the size of one or 

two pixels. Also, if the window size of the 

filter increases, not only noise will be 

removed but also the small levels of 

noise-free resolution of the original 

image. 

    Another of the most famous filters for 

noise removal and restoration of the 

image is Wiener filter. Wiener filter, 

removes the noise statistically. In this 

filter, it is assumed that the image noise is 

a Gaussian distribution with mean zero. 

A Wiener filter act to reduce the mean 

square error between the original image 

and the image is approximated by the 

noisy image (Denoised Image). Equation 1 

shows this in the following way: 
 

 

 

 

 

 

          Wiener filter is capable of removing 

Gaussian noise [1]. But the nature of the 

noise may not always Gaussian. For 

example, such a model is called the 

Poisson distribution function of the 

random nature of photon arrival process 

that is consistent with the distribution of 

pixel values measured. If the noise is 

unknown nature, it must first be 

determined probability density function. 

After that, the probability density 

function parameters to be estimated. 

There are many ways to estimate the 

noise probability density function 

parameters including maximum 

likelihood method. This method requires 

the use of derivative values in order to 

find optimal parameters, so that to obtain 

maximum likelihood functions. 

Derivative methods is quite difficult for a 

number of parameters, larger than 3. But 

since this method, an optimization 

problem, you can use evolutionary 

algorithms to find the optimal values of 

the parameters, Such as genetic 

algorithms. In this paper we present a 

method that is defined in a general 
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probability density function of several 

parameters for noise. Then, we estimate 

the parameters of the density function 

using Imperialist Competitive Algorithm. 
 

2 Generalized Distribution 

Function 

         Generalized probability distribution 

has been developed as a general formula 

for some probability distribution known 

as Weibull, exponential, Riley, gamma, 

log-normal, Pareto, Maxwell, generalized 

Laplace and so on. Apart from the above 

mentioned about the probability 

distribution, the new family of 

distributions can be achieved. The 

statistical properties viz. moments and 

moment generating function have been 

worked out for generalized probability 

distribution (G.P.D). In order to define 

G.P.D., consider the following form of 

confluent hyper-geometric function of 

variable Z as: 
 

 

 

Where α, A, p and A are constants; C ≠ 0, 

-1, -2, and 0≤ Z ≤ ∞. 

M (A, C, Z) is confluent hyper geometric 

function [2] . A random variable Z follows 

a G.P.D, if its probability density function 

(pdf) is given by: 
 

 

 

 

Where, the constant: 
 

 

 

 

F (a, b, d; -x) is Gauss hyper geometric 

function [2]. 

 

    Some of the well-known widely used 

probability distributions both from non-

exponential as well as from exponential 

family can derive from Generalized 

Probability Distribution. For example: If 

random variable Z = X is a G.P.D, then X 

follows uniform distribution for A = 0, λ = 

0, and if A = a, C = a + 1, λ=0, α=1, then (3) 

reduces to incomplete gamma 

distribution [2]. Also if Z = Xβ is a G.P.D, 

then X follows weibull distribution for 

λ=0. 

      If you consider the general probability 

distribution as a probability distribution 

of noise, we can estimate the parameters 

and we find the nearest known 

distribution function for the noise. Thus, 

it becomes clear statistical characteristics 

of noise and noise can be eliminated 

easily with a restoration filter. 

 

3 Parameter Estimation 
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   There are many ways to estimate the 

probability density function parameters. 

One of the common methods is the use of 

maximum likelihood. Suppose there is a 

sample x1, x2, …, xn of n independent 

and identically distributed observations, 

coming from a distribution with an 

unknown probability density 

function f0(·). It is however surmised that 

the function f0 belongs to a certain family 

of distributions {f (·| θ), θ ∈ Θ} 

(where θ is a vector of parameters for this 

family), called the parametric model, so 

that f0 = f (·| θ0). The value θ0 is 

unknown and is referred to as the true 

value of the parameter vector. It is 

desirable to find an estimator  which 

would be as close to the true value θ0 as 

possible. Either or both the observed 

variables xi and the parameter θ can be 

vectors. 

    To use the method of maximum 

likelihood, one first specifies the joint 

density function for all observations. For 

an independent and identically 

distributed sample, this joint density 

function is 
 

 

 

 

    Now we look at this function from a 

different perspective by considering the 

observed values x1, x2, …, xn to be fixed 

"parameters" of this function, 

whereas θ will be the function's variable 

and allowed to vary freely; this function 

will be called the likelihood: 
 

 

 

    Denotes a separation between the two 

input arguments: θ and the vector-valued 

input x1, x2, …, xn. In practice it is often 

more convenient to work with 

the logarithm of the likelihood function, 

called the log-likelihood: 
 

 

Or the average log-likelihood: 
 

 

 

 

 
 

    The hat over L indicates that it is akin 

to some estimator. Indeed, L̂  estimates 

the expected log-likelihood of a single 

observation in the model. 

The method of maximum likelihood 

estimates θ0 by finding a value of θ that 

maximizes
);(ˆ xL 

. This method of 

estimation defines a maximum-likelihood 

estimator (MLE) of θ0… 
 

 

   

    If any maximum exists. An MLE 

estimate is the same regardless of whether 

we maximize the likelihood or the log-

likelihood function, since log is a strictly 

monotonically  increasing function. For 

many models, a maximum likelihood 
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estimator can be found as an explicit 

function of the observed data x1, …, xn. 

For many other models, however, no 

closed-form solution to the maximization 

problem is known or available, and an 

MLE has to be found numerically 

using optimization methods. For some 

problems, there may be multiple 

estimates that maximize the likelihood. 

For other problems, no maximum 

likelihood estimate exists (meaning that 

the log-likelihood function increases 

without attaining the supremum value) 

[3]. 

      In this paper we have used Imperialist 

Competitive Algorithm to maximize the 

likelihood and obtain parameters. This 

algorithm is a global optimization 

algorithm, which we explain below. 
 

 

4 Imperialist Competitive 

Algorithm (ICA) 

 

     Imperialist Competitive Algorithm 

(ICA) is a method that focuses on the field 

of evolutionary computation algorithms 

to find the optimal solution of 

optimization problems. This algorithm 

provides an approach for solving 

optimization problems by modeling the 

process of social - political evolution. The 

application of this algorithm is in the 

category of population-based 

optimization algorithms such as Genetic 

Algorithms, Particle Swarm Optimization, 

Ant Colony Optimization, and Simulated 

Annealing Metals Algorithm and so on. 

Like all algorithms under this category, 

Imperialist Competitive Algorithm 

consists of an initial set of possible 

answers. The initial solutions are known 

as "chromosome" in Genetic Algorithms, 

"particle" in the Particle Swarm Algorithm 

and the "Country" in Imperialist 

Competitive Algorithm. The initial 

solutions of ICA algorithms can be 

improved gradually and provides the 

appropriate solution for the optimization 

problem (best imperial). The main pillars 

of this algorithm consist of Assimilation, 

Imperialist Competition and Revolution. 

Like other evolutionary algorithms, this 

algorithm starts with a random initial 

population, each of them called a 

"country." Some of the best elements of 

the population (in issues relating to 

minimizing the ones that have the lowest 

cost function) are selected as imperialists. 

The remaining populations are also 

considered as a colony. Colonies move 

towards imperialists by Assimilation 

operator. This movement is shown in 

Fig.1 in which a colony moves toward the 

imperialist by x units.  
 

 
 

Figur 1 

 

    The new position of the colony is 

shown in a darker colour. The direction of 

the movement is the vector from the 

colony to the imperialist. In this figure x is 

http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Iterative_methods
http://en.wikipedia.org/wiki/Supremum


a random variable with uniform (or any 

proper) distribution. Then x ~ U (0, ß*d), 

where ß is a number greater than 1 and d 

is the distance between the colony and the 

imperialist state. ß>1 causes the colonies 

to get closer to the imperialist state from 

both sides. Revolution causes a country to 

suddenly change its socio-political 

characteristics. That is, instead of being 

assimilated by an imperialist, the colony 

randomly changes its position in the 

socio-political axis. The revolution rate in 

the algorithm indicates the percentage of 

colonies in each colony which will 

randomly change their position. While 

moving toward the imperialist, a colony 

might reach to a position with lower cost 

than the imperialist. In this case, the 

imperialist and the colony change their 

positions. Then the algorithm will 

continue by the imperialist in the new 

position and the colonies will be 

assimilated by the imperialist in its new 

position. The total power of the empire 

depends on both its constituent parts, 

namely, the Imperial (the core) and its 

colonies. 

In math mode, this dependence has been 

modeled by defining imperial power as 

the total power of the imperialist country 

besides a percentage of the average of its 

colonial power. With the formation of the 

early empires, imperial competition 

between them begins. If each empire 

cannot be succeed in imperialist 

competition, and increase their power (or 

at least reduce its influence to prevent), 

will be removed from the colonial 

competition. So the survival of an empire 

depends on its ability to attract rival  

colonial empires and bring them under 

control. As a result, in the imperialist 

rivalry, the power of larger empires 

gradually increases, and weaker empires 

are removed. Empires will be forced to 

develop their own colonies to increase 

their power [4]. Figur 2 shows the 

flowchart of the algorithm. 

 
 

Figur.2 

 

5 Parameter Estimation of 

Noise in Digital Images using 

ICA and Generalized        

Probability Density Function 

 
       Our proposed methodology of this 

study is to introduce the generalized 

probability density function as noise 

probability density function with 

unknown parameters and to estimate this 

parameters using ICA. If the noise in a 

digital image is cause of destruction, we 

can achieve noise density function and its 

parameters to calculate the statistical 

characteristics such as mean and variance 

of noise. Usually, when using restoration 

filters such as Weiner filter, it is necessary 

to know the total variance of noise. For 

example, Adaptive Wiener filter needs to 

estimates the local mean and variance 

around each pixel. 
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        Where f(x,y) is grey level of pixel and  

η is the N-by-M local neighborhood of 

each pixel in the image. Adaptive Wiener 

filter then creates a pixelwise Wiener filter 

using these estimates, 

 

 

     Where ν2 is the noise variance [5].So 

we can estimate noise parameters to 

calculate the noise variance. The 

implementation of our proposed method 

is as follows: 

1) Select part of an image that is almost 

without changes. 

2) Consider gray level of this part of the 

image as noise data. 

3) Estimate the parameters of Generalized 

Probability Density function using this 

data and ICA. 

4) Calculate the noise variance and other 

statistical properties using these 

parameters. 

5) Restoration of the image using the 

appropriate Restoration Filter. (Such as 

adaptive         Weiner filter) 

6 Results 

    For example, we have an image with a 

noise that has a Weibull probability 

density function is destroyed to obtain the 

image noise. Figur.3 and Figur.4 show the 

original and noisy image, respectively. 

 

 
 

Figur 3 

 

)10(

),(
1

),(
1

22

,

2

,





















yx

yx

yxf
NM

and

yxf
NM

)11(

)),((),(
2

22





 


 yxfyxg



 

Figur 4 .With 200 pixels from the left corner 

of the original image that has been marked in 

Figur 4, the noise parameters are estimated by 

ICA. Figur 5 shows a histogram of the area. 

 

 

Figur 5 
 

   In this algorithm, we have considered 

the cost function equal to negative 

logarithmic likelihood function. So: 

 

  

 

    Therefore, the algorithm finds 

the values of the parameters so 

that the cost function would be 

minimum. Fig.6 shows the values 

of the cost function at 20 iterations 

the algorithm. 
 

 

 

 

 

 

 

     

 
   Figur 6 

 

 

The values obtained for the parameters 

show that the noise has Weibull nature. 

These values were obtained respectively 

as follows: α =1, β =3, γ =2 

    Therefore, we calculate the variance 

(dispersion) of noise as follows [6]: 
 

   Where Γ is Gamma function. The value 

obtained for the variance is equal to 

σ2=26.85. 
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Figur  7 shows the reconstructed image 

using Adaptive Weiner Filter cited the 

amount of variance. 

 
 

 

 

 

 

 

Figure 7 

 

7 Summary 
    In this paper, we've introduced a new 

approach to identify the noise and 

estimate probability density function 

parameters. The results show that 

evolutionary algorithms can be easily and 

accurately estimate these values. Then we 

calculated the statistical characteristics of 

the noise, such as variance.  
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