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1 Introduction 

he Homotopy Analysis Method (HAM) 

was initially proposed by Liao in his PhD 

thesis (Liao, 1992). A systematic and clear 

exposition on HAM is given in (Liao, 2003). In 

recent years, this method has been successfully 

employed to solve many types of nonlinear, 

homogeneous or non homogeneous, equations 

and systems of equations as well as problems in 

science and engineering (Liao, 1997). HAM 

contains a certain auxiliary parameter ħ which 

provides us with a simple way to adjust and 

control the convergence zone as well as the 

convergence rate of the series solution. 

Moreover, by means of the so-called ħ curve, it is 

easy to determine the valid ranges of ħ to obtain 

a convergent series solution. Thus, through 

HAM, an explicit analytic solution of nonlinear 

problems is possible. Over the last decades, 

fractional calculus has found diverse 

applications in various scientific and 

technological fields (Hilfer, 1999; Liao, 1995; 

Mainardi, 1997; Oldham, 1974; Podlubny, 1999). 

Fractional diffusion equations arise in 

continuous-time random walks modeling of 

anomalous diffusive and sub-diffusive systems, 

unification of diffusion and wave propagation 

phenomenon, and simplification of the results (  

Agrawal, 2002). The nature of diffusion is 

characterized by temporal scaling of the mean-

square displacement
2<r (t)>t . For standard 

diffusion, is equal to one, whereas in anomalous 

sub-diffusion α <1  and in anomalous super-

diffusion α >1 . Both of the anomalous diffusion 

processes have been unified in continuous time 

random walk models with spatial and temporal 

memories (Hilfer, 1999;  Henry and Wearne, 

2000; Kaya, 2000; Klafter et al. 1984). In this 

paper, we consider analytic and approximate 

solutions of the space-fractional telegraph 

equation of the form (Henry and Wearne, 2000): 
2

2
( ), 0,,0 2

u u u
g t t

x x t






  
     

  
               (1)                                                                           

Subject to the initial and boundary conditions 

 

    1 2

(0, )
( ,0) ( ),0 1 , (0, t) ( ), 0 , ( ), 0

u t
u x s x x u f t t f t t

x


       


(2)                               

Where α is a parameter describing the order of 

the fractional space-derivative and ( , t)u x is 

assumed to be a causal function of space, i.e., 

vanishing for x   .The fractional derivative is 

considered in Caputo sense (Podlubny, 1999). 

The general response expression contains a 

parameter describing the order of fractional 

derivative that can be varied to obtain various 

responses. In the case of α=1, fractional equation 

reduces to classical telegraph equation. We shall 

also examine the time-fractional telegraph 

equation, i.e. 


2 2

2 2
, 1

u u u
t

t t t

 

 
  

  
     

  
       (3)                                                                           

 Where and are arbitrary constants 

and ( , t)u x is assumed to be a causal function of 

time vanishing for 0t  . In the case of α=1, time-

fractional equation reduces to classical telegraph 

equation. 

2 Basic definitions 

Definition 1. A real function ( ),f t t   is said 

to be space ,C R   if there exists a real 

number ( )p  , such that
1( ) (t)pf t t f  

where 1(t) [0, )f   . ClearlyC C  if  . 

Definition 2. A function ( ),f t t    is said to be 

in the space , 0,mC m IN   if
mf C . 

Definition 3. The left sided Riemann-Liouville 

fractional integral of order 0  , 

(Mainardi,1997; Luchko and Gorenflo, 1999;  

Moustafa, 2003) of a function , 1f C    is 

defined as 

 

 
 

 
   
1

0

                                           0   

1
      0,  0 

t

f t

f
d t

t





 

 


 
 
 
  



  


   (4)                                                                               

 

 Definition 4. The (left sided) Caputo fractional 

derivative of
1, , 0mf f C m IN   , is defined 

as (Samko et al. 1993) 

T 
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m m m IN

t












 
 
 
 
 





 
 

 





 

 (5)                     

Note that (Liao, 1992; Liao, 2003; Liao, 1997; 

Hilfer, 1999; Liao, 1995; Mainardi, 1997; 

Kaya,2000;  Klafter et al. 1984; Luchko and 

Gorenflo, 1999;  Moustafa, 2003)  

(1 )

0

1 ( ,s)
( , t) ,{ , t 0}

( ) (t s)

t

t

f
I f ds




 

 
   
   (6)                                                                                      

 *

( , )
( ) I   1<m

t

m

m

f t
D f t m m

t

  
 

  


       (7)                                                                               

( 1)
,{ 0, 1, t 0}

( 1)
I t t   

 
 

 
    
  

 (8)                                                                                       

 
( 1)

I            
( )

>0, > 1, >0
1

t t t   
 

 

 


 

 

    (9)                                                                         

Definition 5. The Mittag-Leffler 

function (z)E with 0  is defined by the 

following series 

representation, valid over the entire complex 

plane (Momani, 2005): 

0

(z) { 0,z C}
( 1)

n

n

z
E

n
 







  
 

             (10)                                                                                    

3 The homotopy analysis method 

In this study, we apply homotopy analysis 

method (Liao, 2005) in solving the stated 

problems. Consider fractional differential 

equations of form 

 ( ( , )) 0N u x t                                                      (11)                                                                                                                       

Subject to the following initial conditions: 

( , ) , 1,2,...,k ku x t C k n                            (12)                                                                                                                 

Where N are nonlinear operators that model the 

system, x and t denote the independent variables 

and ( , )u x t  are unknown functions. By means of 

generalizing the traditional homotopy method, 

Liao (Agrawal, 2002) constructed the so called 

zero-order deformation equations 

0(1 )[ ( ( , ; ) ( , ( ))] , ( , ; )p L x t p u H Nx t p x t x t p     (13)                                                           

Where [0,1]p is the embedding parameter, 

0 is the non-zero auxiliary functions 

and ( 1 )tL D n n     is an auxiliary linear   

operator with the following                      

property ( , t( )) 0xL   when ( , ) 0x t  . 

0 (r, t)u is the initial estimates, of ( , t)u x ,and 

( , ; )u x t p is the unknown functions, it is 

important, that one has great freedom in 

choosing auxiliary variables in HAM. Obviously, 

for 0p  and 1p   the follows holds, 

repesctively,  

0 0( , t),( , ;0) ( , ;1) ( , t)x t t xu ux x           (14)                                                                                  

Thus, as p increases from 0 to 1, the 

solution ( , ; )x t p varies from initial 

guess 0( , )u x t to the Solution ( , t)u x .Taylor series 

expansion of ( , ; )x t p with respect to p , yields  

0

1

( , ; ) ( , ) ( , ) m

m

m

x t p u x t u x t p




                 (15)                                                                                      

Where 

0

1 ( , ; )
( , ) ( )

!
m

m

pm

x t p
x t

m
u

p


 
 


               (16)                                                                                              

If the auxiliary linear operator, the initial 

guess 0( , )u x t , the auxiliary parameter I , and 

the auxiliary functions are chosen properly, 

Eq.(12) converges for 1p  ,and we have 

0

1

( , ) ( , ) ( , )m m

m

u x t u x t u x t




                   (17)                                                                                                   

Define the vector 

0 1( , ) ( , ), ( , ),..., ( , )n nu x t u x t u x t u x t         (18)                                                                                        

Differentiating Eq. (11) m times with respect 

to the embedding parameter p , evaluating 

at 0p  and dividing by m!, yield the 
thm  order deformation equation 

1 1[ ( , ) ( , )] ( , ) [ ( , )]m m m m mL u x t u x t xH t R u x t     (19)                                                                   

1

1 01

1 [ ( , ; )]
R [ ( , )] ( )

( 1)!

m

m m pm

N x t p
u x t

m p



 

 
 

 
(20)                                                                     

And 

  
1 >1

0 1
m

m

m


 



 


                               (21)                                                                                                            

 

Applying the Riemann-Liouville integral 

operator
 to both sides of Eq.(15), results the 

following 
1

( )

1 1 1

0

( , ) ( , ) ( ,0 ) ( , ) I [R ( )]
!

jn
j

m m m m m m m

j

t
u x t u x t u x tH x u

j

 




  



  
(22)                                      

Suppose that using HAM, a series solution based 

on parameter has been found; now, the 

question is, what values of will ensure 

convergence for such series over a large enough 

zone with an acceptable rate of convergence. 

According to (Abbasbandy and Shirzadi, 2009) if 

one investigates the graph of solutions versus , 

for cases that a unique solution exists, acceptable 

values of  are those for which the series 

convergences to the same solution. Hence, there 
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will be a flat line in such a graph signifying 

passable ranges of . 

 

4 space-fractional telegraph 

equations    

HAM is applied to systems modeled using the 

space and time-fractional telegraph equations. 

 Example 1 . Consider the following system of 

space and time-fractional telegraph equations: 
2

2
, 0,0 2

u u u
u t x

x t t





  
     

  
            (23)                                                                                        

Subject to boundary conditions 

 
(0, )

(0, ) , , 0t tu t
u t e e t

x

 
  


              (24)                                                                                              

and initial condition 

( ,0) 1 ,0u x x x                                  (25)                                                                                                            

Where 0   and for the special case 

when 2  , this system represents a 

homogeneous 

telegraph and has been solved successfully 

(Kaya, 2000). In applying the homotopy analysis 

method, based on initial conditions given in 

Eq (24) , it is convenient to choose 

0( , t) (1 )tu x e x                                        (26)                                                                                                                    

As an initial approximation of Eq.(23). The 

linear operator can be defined as 

[ ( , ; )] D [ ( , ; )]xL x t p x t p

                     (27)                                                                                                  

With the property 1 2[ c ] 0L c x  , 

where ( 1,2)ic i  are integral constants, and 

the nonlinear operator [ ( , ; )]N x t p  can be 

stated as 
2

2
[ ( , ; )] D [ ( , ; )] [ ( , ; )]

[ ( , ; )] [ ( , ; )]

xN x t p x t p x t p
t

x t p x t p
t






    




   


      (28)                       

Using the above definitions, and 

assuming ( , ) 1H x t  the zero-order deformation 

equation can be constructed as 

0(1 ) [ ( , , ) ( , )] [( , ; )]q L x t p u x t p N x t p     (29)  

Obviously, for 0p  and 1p   

0( , ,0) ( , ), ( , ,1) ( , )x t u x t x t u x t     (30)                                                                                             

Respectively. The
thm  order deformation 

equations can then be written as  

1 1[ ( , ) ( , )] ( )m m m mL u x t u x t R u     (31)                                                                                               

Where 

1 1

2

1 1 12
( ) D m m

m m x m m

u u
R u u u

t t

  

   

 
   

 
 (32)                                                                                     

Solution of the 
thm -order deformation Eq(31) is,   

1 1

1

2

1 1
12

( , ) ( ( , )] ( ) (0, t)

(0, )
( )[

)

[ ]]

[m m m m m

m m m
mm

u

u x t u x t u

u t

x

u
I u

t t



 



 

  


   


 

 
 

 


   (33)                                                                   

Since 

0

1

( , t) ( , ) ( , )
m

u r u x t u r t




                         (34)                                                                                                                

And  

0( , ) e (1 )tu x t x                                        (35)                                                                                                                               

Then,  
1

1( , ) [ ]
( 1) ( 2)

t x x
u x t e

 

 



  
   

      (36)                                                                                               

From (33) and (36) 

( )

1(0, ) 0, 0,1j

mu t j                                  (37)                                                                                                                        

Thus 

2 1 1

2 2 1

( , ) (1 ) ( , ) ( , )

[ ]
(2 1) (2 2)

t

t

u x t u x t e u x t

x x
e

 

 






  

 
   

                 (38)                                

2 2 1

3 3 1

( , ) (1 ) ( , ) ( , )

[ ]
(3 1) (3 2)

t

t

u x t u x t e u x t

x x
e

 

 






  

 
   

      (39)                                   

.

.

.

 

 Total solution can be written as: 
2

2 1

3 3 2

1

2 2 1

( , ) (1 ) ( , ) [(2 )
(2 1)

2
(1 ) ]

(3 1) (3 3)

(1 ) [
( 1) ( 2)

...]
(2 1) (2 2)

t

x
u x t u x t t

x x
t

x x
e

x x



 

 

 



 

 

 








   
 

  
   

  
   

  
   

   (40)                           

And in the special case of 1 , it yields  
1

2 2 1

( , ) [1
( 1) ( 2)

...]
(2 1) (2 2)

t x x
u x t e x

x x

 

 

 

 






   
   

  
   

     (41)                                  

If 2  , the solution given in (Kaya, 2000) is 

reproduced, i.e. 
2 3 4

( , ) [1 ...]
2! 3! 4!

t x x x
u x t e x                (42)                                                                                      
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This solution is equivalent to the exact solution 

in closed from  
( )( , ) x tx t e                                                     (43)                                                                                                                             

Example 2 . Consider the following no 

homogeneous space-fractional telegraph 

equation: 



2

2

2 1, 0,0 2

u u u

x t t

u x t t







  
 

  

      

                          (44)                                                                

Subject to boundary conditions: 

(0, )
(0, ) , 0, 0

u t
u t t t

x


  


                      (45)                                                                                                    

And initial condition 
2( ,0) ,0u x x x                                     (46)                                                                                                                

Where 0   and for the special case 

when 2  , this system represents a 

homogeneous telegraph and is solved in (Kaya, 

2000) as an application of homotopy analysis 

method. In view of the initial condition given by 

Eq.(24), it is convenient to define  
2

0( , ) [ 1]u x t t I x t                            (47)                                                                                                   

As an initial approximation to Eq.(23). Let the 

linear operator 

[ ( , ; )] D [ ( , ; )]tL x t p x t p                   (48)                                                                                                

With the property 1 2[c c ] 0L x  , 

where c ( 1,2)i i  are integral constants. The 

nonlinear operator can be written as 

 

2

2
[ ( , ; )] D [ ( , ; )] [ ( , ; )]

[ ( , ; )] [ ( , ; )]

xN x t p x t p x t p
t

x t p x t p
t






    




   


 (49)  

Using the above definition, along with the 

assumption that ( , ) 1H x t  the zero-order 

deformation equation can be constructed as 

0

(1 ) [ ( , ; )

( , )] [ ( , ; )]

q L x t p

u x t p N x t p

 

  
                     (50)                                                                 

Obviously, for p 0 and p 1  

0( , ;0) ( , ), ( , ;1) ( , )x t u x t x t u x t        (51)                                                                                     

 Respectively; thus, the
thm  order deformation 

equations becomes 

 1 1[ ( , ) ( , )] ( )m m m m mL u x t x u x t R u       (52)                                                                                     

Where 

1 1

2

1 1 12
( ) D m m

m m x m m

u u
R u u u

t t

  

   

 
   

 
 

Now the solution of this the
thm  order 

deformation Eq(52),can be written as 

 

          

2

1

2

2

2

2

3

1

2 2

21

2
( , ) (1 ) (1 )

( 3) ( 1) ( 1)

...] (1 )[(1 )
(2 1) ( 1)

(2 ) (1 ) ...]
(2 3) (2 1) (

[(1 )( )]

[

3 1)

(0, )
( )[ ] 1m

m

m m

m

x x x
u x t t t t

x

I

u u
I

t t

x
t t

x x x
t t t

u t
x t

x

  

 





 



  

 

  

 





 

      
     

    


  



  

    
     


    






 
1]mu 

  (53)                              

Finally 

0 1
( , ) ( , ) ( , )mm

u x t u x t u x t



                 (54)                                                                                                     

This yield 
2

0

2

[( )( , ) 1

2
(1 )

( 3

]

) ( 1)

u x t t x t

x x
t

I

t



 

 



   

  
   

 

                (55)                                         

2

0 0
1 02

2 2 2

( , ) [ ]

2
(1 ) ]

( 1) (2 1) (2 3)

u u
u x t I u

t t

x x x
t t



  

  



 
    

 

  
     

    (56)                  

2

2 1

3 3 2

( , ) (1 ) ( , ) [(2 )
(2 1)

2
(1 ) ]

(3 1) (3 3)

x
u x t u x t t

x x
t



 



 



    
 

 
   

    (57)                       

 

.

.

.

                       

Deriving each ( , )iu x t term leads to 
2

2

2 2 2

3

2
( , ) (1 )

( 3) ( 1)

(1 ) ...]
( 1) (2 1)

(1 )[(1 )
( 1)

2
(2 )

(2 3) (2 1)

(1 ) ...]
(3 1)

[(
x x

u x t t t

x x
t t

x
t

x x
t t

x
t

 

 



 



 

 



 







    
   

  
   

   
 

 
   

  
 

         (58)       

So in the special case 1 , one obtains ( , )u x t : 

 

2

2

2
( , ) (1 )

( 3) ( 1)

(1 ) ...
( 1) (2 1)

x x
u x t t t

x x
t t

 

 

 

 

    
   

  
   

    (59)                        
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It can be seen that the self-canceling noise terms 

appear between various components. 

Setting 2  ,and canceling the noise terms in 

(59) the exact solution for this special case is 

obtained, i.e. 
2( , )u x t x t                                                (60)                                                                                                                           

                                                                    

5 Time-fractional telegraph equations 

 
Consider the time-fractional telegraph equation, 


2 2

2 2
, 1

u u u
t

t t t

 

 
  

  
     

  
     (61)                                                                                  

Subject to initial boundary and conditions 

1 2( ,0) g ( ), ( , ) ( ), (0, ) ( )tu x x u x t g x u t s t   (62)                                                                             

Let 

0 1 2( , ) g ( ) g ( )u x t x x t                               (63)                                                                                                         

 As an initial approximation to solution of 

Eq(23). Defining the linear operator 
2[ ( , ; )] D [ ( , ; )]xL x t p x t p

                    (64)                                                                                               

With 

property 1 2[ ] 0L c c x  ,where ( 1,2)ic i  are 

integral constants, and the nonlinear operator 
2

2

2

[ ( , ; )] D [ ( , ; )]

D [ ( , ; )] [ ( , ; )]

t

t

N x t p x t p

x t p x t p
x



 





   


  



         (65)                                 

Along with the assumption that ( , ) 1H x t  the 

zero-order deformation equation is constructed 

as 

0

(1 ) [ ( , ; )

( , )] [ ( , ; )]

q L x t p

u x t p N x t p

 

  
                     (66)                                                                   

Noting that for 0p  and 1p   

 0( , ,0) ( , ), ( , ,1) ( , )x t u x t x t u x t             (67)                                                                              

Respectively; thus, the 
thm  order deformation 

equations, becomes 

1 1[ ( , ) ( , )] ( )m m m m mL u x t x u x t R u              (68)                                                                                    

Where 
2

2

1 1 1 12
( ) [ ] [ ] [ ]m m t m t m mR u D u D u u

x

       


  


 (69)   

Solution of the 
thm  order deformation, Eq(68), 

can be written as 

1
( )

1 1

0

2
2

1 12

( , ) ( )

[ ( , )] ( )[ ( ,0) ]
!

[ D [ ] ( )]

m m

j
j

m m m

j

t m m

u x t

t
u x t u x

j

I u u
x

 





 

 



  

 

 


 



             (70)                                                

Homotopy Analysis Method assumes a series 

solution for ( , )u x t of the form 

0 1
( , ) ( , ) ( , )mm

u x t u x t u x t



                       (71)                                                                                             

From Eq.(70) ( , )iu x t terms are obtained 

successively 

0 1 2( , ) ( ) g ( )u x t g x x t                                     (72)                                                                                                         

2
2

1 0 02
( , ) [ [ ] [ ]]tu x t I D u u

x

  


 


 

1

1 2

2 2 1
(2) (2)

1 2

[g ]
( 1) ( 2)

[g ]
(2 1) (2 2)

t t
g

t t
g

 




 




 





 
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 
   

    (73)                              
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4 4 1
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
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



  
   
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  
 

 
   

 
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 (74)          

.

.

.

 

Finally 
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2 2 1
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Setting 1  and 1  , we obtain: 
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   
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Fig.1 shows that interval [-3,2] is ” passable 

region ” ; i.e. the series will converge for all 

values of over this interval. 

 Figure1:  of ( , )U x t for 0.5x  , 1t       

2  and 1.75   

 

6 Conclusions 
 

The HAM analysis method is a simple technique 

that offers two mechanisms, i.e. and the 

auxiliary function ( , )H x t ,which allow the 

control of convergence rate within a specified 

convergence zone. This method yields the 

solution in a series form. An important property 

of this method is that it offers closed form 

solutions to nonlinear problems. The method is 

also suitable for handling differential systems 

with fractional derivatives. In this paper HAM 

was used to solve space-fractional telegraph 

equation. For value of 2  ,(see (Kaya, 2000; 

Momani, 2005)) exact solution was obtained. 

Homotopy Analysis Method is better than 

Adomian Decomposition Method in that it 

contains better approximations. (ADM) is a 

special case of (HAM) for 

which ( , ) 1H x t  and 1 . Here for values 

of 0 2   the auxiliary parameter and 

auxiliary function ( , )H x t are selected 

appropriately in constructing the series solution. 

Examples are solved and the obtained results 

show to be more accurate than (ADM)(see ( 

Momani, 2005)). 
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