
230

Recebido: dia/mês/ano Aceito: dia/mês/ano

Ciência e Natura, v. 37 Part 2 jun. 2015, p. 230−238

ISSN impressa: 0100-8307 ISSN on-line: 2179-460X

Simulation and Comparison of Efficency in Pathfinding algorithms in Games

Azad Noori 1, Farzad Moradi 2

1Department of Computer at Technical and Vocational University, Tehran, iran
2 Saghez Branch,Islamic Azad University, Saghez, iran

Abstract

There are several routes to go from point A to point B in many computer games and computer player have to choose the best route. To do

this, the pathfinding algorithms is used. Currently, several algorithms have been proposed for routing in games so that the general challenges

of them is high consumption of memory and a long Execution time. Due to these problems, the development and introduction of new

algorithms will be continued. At the first part of this article, in addition to basic and important used algorithms, the new algorithm BIDDFS

is introduced.

In the second part, these algorithms in the various modes, are simulated on 2D-Grid, and compared based on their efficency (memory

consumption and execution time) , Simulated algorithms include: Dijkstra, Iddfs, Biddfs, Bfs (Breadth), Greedy Best First Search, Ida*, A*,

Jump point search, HPA*.

Keywords: BIDDFS, JPS, A*,HPA*, IDA *.

231

Recebido: dia/mês/ano Aceito: dia/mês/ano

1 Introduction

One of the important concepts in the

game is trying to use artificial intelligence

that has been in them [1]. For achieving the

aim, several methods and techniques have been

proposed .One of the most important methods is

the use of pathfinding method, Some of them are

discussed in part [2].

Routing algorithms are divided into two

groups: informed and uninformed .Uninformed

method (blind search) pathfinding is performed

in all directions. When this method usually is

used that the target location is not specified such

as Dijkstra and IDDFS but, in formed method,

heuristic function usually is used to locate the

target so that routing direction is guided toward

the target. In this method, target location is

usually determined at first. Such methods A*,

IDA*, HPA* and etc . The biggest challenge of

these Algorithms is the use of resources such as

memory and their execution time. Algorithms

such as depth first search, Breadth first search,

Dijkstra, iterative and A Star due to games

restrictions in the use of resources such as

memory and time are not usable.By increasing

complexity of new games, game designers are

thinking of new ways to solve old problems.

This paper consists of two parts. In the first

part, theoretical concepts are presented. Some

discussions such as search and display space,

informed and uninformed search methods,

heuristics and some of the most important

functions of pathfinding algorithms and

methods have been described. The second part

includes the implementation and simulation.

Some of the most important algorithms are

evaluated and analyzed in experimental

implementation. Algorithm A is one of the most

important and basic of these algorithms due to

excessive memory consumption and

computational overhead that is currently not

used, Instead of it , some methods such as

HPA*[5] and jump point search [22] are used to

improve and modify its defects. The

development of these algorithms have been

studied, finally, simulation is performed in

section [6]. These algorithms are implemented on

a 2D grid map. They are compared together

according to performance and the number of

nodes traversed from start to end [2,3].

2 History And Previous Work

In [4], the author mentions to intelligent

routing that is required in route selection in

games. In an article in [5] new algorithm called

HPA* has introduced. By dividing map, several

smaller sections cause decreasing the complexity

of the routing algorithms used in the Grid maps.

In [6] the author introduces a new algorithm

called DHPA * and SHPA * algorithm for static

and dynamic environments based HPA * and

compared them according to their speed and

efficiency with HPA *. Also in [7] some method

such as bidirectional search and path smoothing

are proposed on HPA*. in[8]While

implementation of algorithm A* with C++ are

checking , 2-dimension games based networking

is presented. In [9] Routing algorithm role is

considered in cognitive maps and Network

modeling method is proposed .New algorithm

called BIDDFS based DFS is introduced in [10] so

that it is useful for tree search space and it is

reduce iterative search problem in IDDFS.

3 Display The Search Space

The first step to examine different methods of

routing, is finding a good way to display the

search space. At this step, game space should be

converted into the right structure to display the

search space until we can implement and test

routing algorithms. In other words, selection of

an appropriate representation for the actual

direction of motion is necessary. It has highly

effective on the effectiveness and acceptability of

the resulting path. For example simpler method

can cause the reducing the number of search

operations in the Algorithm A *, therefore,

algorithm runs with higher speed. some

algorithms, like HPA * by dividing the map into

several clusters, or by displaying a map nav-

mesh method as convex polygons, and by

reducing the search space, all of them lead to

increase A * algorithm speed. To implement and

o

232

Recebido: dia/mês/ano Aceito: dia/mês/ano

test the routing algorithms, route maps should

become preferably weighted graph maps, some

conversion of the state space to graph is located

at the source [2] such as waypoint method

(Figure 1.d) and nav-mesh approach(Figure 1.e)

that put in the source [20] .Also, displaying map

as grid has been described and used in [10].

Display of the search space can be displayed in 1

to 5 modes. [15-16].

Figur 1: Map representation [16]

4 Pathfinding in games

In many games, there are multiple choice and

different path to the same destination The

computer player needs to make the best decision

and estimate shortest path from source to

destination.

4.1 Uninformed search algorithms (blind

search)

In this way, the search is performed in all

directions and so many nodes are examined.

This method is usually used when the first target

node location is unknown. All of the algorithms

that are located in this group guarantee to find

the shortest path (if such path can be existed),

however, it is time – consuming and a lot of

space are searched. In this group are the most

important algorithms that can be used include:

BFS (Breadth-first search (،DFS ،IDDFS ،BIDDFS,

Dijkstra,etc.(fig 2.b)

4.2 Informed search algorithms

In this method, heuristics function is usually

used to locate target so that routing will be

guided toward target .In this method, target

location is usually determined from start point.

Heuristic function work is the estimating of

distance between the current node and the

efficiency of this method depends on the

intended heuristics function work. A * algorithm

and its derivative algorithms used informed

search method.(fig 2.a) Finding the difference

between informed and uninformed method can

be observed in following Figures. The blue color

is the area of investigated nodes.

 Figur 2.a : informed search (A*)

Figur 2.b : blind search(Dijkstra) (Xu, 2013)[24]

233

Recebido: dia/mês/ano Aceito: dia/mês/ano

4.3 Grouping search algorithms

In Table 1. Some of the most important routing

methods and algorithms that have been

proposed for the computer gaming environment

(they are sorted by year).

5 Introduce Some Basic Algorithms

In Each Group

 5.1 Uninformed Algorithms

 5.1.1 Dijkstra

This algorithm is one of the graph traversal

algorithms that solves the shortest path problem

from start point for weighted graphs that does

not have any edge with negative weights,

finally, by creating the shortest path tree ,

shortest path from the source to the all of

destination vertex of graph is thus obtained Also

,you can use this algorithm to find the shortest

path from source to destination vertex of

algorithm so that when this algorithm is

running , as soon as shortest path from source to

destination, the algorithm can be stopped.

Dijkstra algorithm trend is available in source

[1]. Implementation sample is tested in two-

dimensional Grid that it is visible in figure 2.b.

As you can see, search is done in all directions

and many nodes have been checked Finally, the

shortest route is selected, The main characteristic

of Dijkstra algorithm is that guarantees finding

the shortest path in return, it will take time to

implement because all paths must be tested and

the shortest path should be selected .The nearest

node to the source node should be found in this

algorithm at first, and then the search continues

in all directions (Blind search). The Dijkstra

Table 1. Pathfinding algorithms

a. Informed Search

Author(s) Year Name
Peter Hart,Nils Nilsson,Bertram Raphael 1968 A*

Judea Pearl 1984 BFS(best first search)

Korf, Richard 1985 IDA*(iterative deepening A*)

Korf 1990 LRTA* (Learning Realtime A*)

Russell, S 1992 SMA* (SimplifiedMemory Bounded A*)

Anthony Stentz 1994 D*(dynamic a*)

Holte, Perez,Zimmer 1996 HA*(Hierarchical A*)

S. Koenig, M. Likhachev, D. Furcy 2004 LPA*(Lifelong Planning A*)

Adi Botea, and Martin,Muller and Jonathan
Schaeffer

2004 HPA* (Near Optimal hierarchical Path-finding)

Sturtevant and Buro 2005 PRA*(Partial Refinement A*)

Douglas Demyen and Michael Buro 2006 TRA*(Triangulation-Based Pathfinding)

A. Nash, K. Daniel, S. Koenig and A. Felner 2007 Theta*

M. Renee Jansen and Michael Buro 2007 HPA* Enhancements

Alex Kring, Alex J. Champandard, and Nick
Samarin

2010 DHPA* AND SHPA*

D. Harabor; A. Grastien 2011 Jump point search

Uwe koch 2011 GHPA*(grid-specific feauture of hpa*)

Patel 2013 JPS (jump point search)

Nash, A.Koenig, S 2013 PHI*

b. Uninformed Search

E. F. Moore 1950 BFS(Breadth-first Search)

Edsger Dijkstra 1959 DIJKSTRA

Charles Pierre Trémaux 1882 DFS(depth-first search)

Korf, Richard 1985 IDDFS(Iterative deepening depth-first search)

Kai Li Lim and others 2015 BIDDFS(boundary iterative-deepening depth-first
search)

234

Recebido: dia/mês/ano Aceito: dia/mês/ano

algorithm works in static environments well but,

it will be changed in dynamic environment, and

it will be inefficient.

5.1.2 IDDFS(Iterative deepening depth-

first search)

This algorithms works like Dijkstra and it is

suitable for tree searching space (korf ,1985),

Actually, the algorithm is derived from DFS and

a certain threshold is used to prevent iterative

search in this algorithm(the problem that was in

DFS)the first threshold is set to 1, and the search

is performed to a depth of 1, If target is not

found, then one unit is added to threshold, and

search is done up to a depth of 2 and continues

to do the same routine until the goal to be

found.[23]

5.1.3 BIDDFS (boundary Iterative

deepening depth- first search)

BIDDFS is an uninformed boundary search

algorithm. The BIDDFS is a newly proposed

algorithm aiming to address the memory

drawback of the conventional Dijkstra’s

algorithm (Dijkstra) and the searching

redundancy of the IDDFS. Its main concept

utilizes a boundary search. The BIDDFS explores

the compromise between the IDDFS redundancy

and the Dijkstra’s algorithm’s increasing

memory requirements on larger maps [11].

This algorithm[Lim and other ,2015] is

created because of solving IDDFS problems ,the

problem of IDDFS is iterative search means that

each time that search starts from the roots and

develops in depth and goal is not found, search

starts from the root again and search will be

continued in another path. But in BIDDFS

method, this problem was solved by storing the

last parent node that was traversed in the

previous search. As a result, next search are not

starting from root again. But, search will be

continued from the node which is stored.

5.2 Informed algorithms

5.2.1 Greedy Best First Search

Greedy search is one of the best first ways to

search ,the aim of this method is to minimize the

cost of achieving the goal by using the estimate

function (heuristics)In this strategy ,node which

is closer to goal, It is Initially developed. This

means that instead of the closest vertex is

selected from the starting node, it selects nearest

node to the destination node. In the greedy

search, we have

 f(n)=h(n) (1)

The main feature of this algorithm is that it

does not guarantee to find the shortest path But

it has a higher Execution speed. In this method,

finding a path from source to destination in the

fastest time is so important Therefore, the

obtained path is not necessarily the shortest

path. The problem of simulation is visible in

section 6. In this method, the nearest node to the

target node is searched at first. In fact, unlike

Dijkstra, Search is not in all directions but It is

only toward the purpose.

5.2.2 A*

The solution to the above problems is to

combine features of both methods (Dijkstra and

Bfs) and devised a new method called A *. In this

method, revelation of standard methods and

conventional techniques have been combined so

that advantages of both techniques can be used.

This algorithm uses Greedy Best First Search and

operates as follows:

 Path cost function g (n): the cost of the path

from the initial node to n node

 Heuristic function h (n): The estimated cost

of the cheapest path from n node to target

node

 The evaluation function f (n): The estimated

cost of the cheapest path through n.

f(n)=g(n)+h(n) (2)

According to find short path optimization, A*

works much better than the greedy bfs. And in

terms of run speed, A* acts faster than Dijkstra .

In other words, it finds the shortest path and its

running is faster than Dijkstra. However, in the

worst case, this algorithm may act as Dijkstra

means that the performance of it is depended on

used heuristic function one example of its

implementation is 2D grid that it can be

observed in Figure2.a. The source [4], you can

find a sample implementation of this algorithm.

5.2.3 Hierarchical Pathfinding A * (HPA*)

235

Recebido: dia/mês/ano Aceito: dia/mês/ano

Hierarchical pathfinding A* was developed

by Adi Botea and his colleagues in 2004 [5]. It is

combination of pathfinding and clustering

algorithms, which works by creating an abstract

graph on the basis of two dimensional grids. The

main HPA* principle is based on dividing search

problem into several smaller sub problems, and

caching results for every path segment [7]. HPA*

pathfinding phase consists of two parts called

preprocessing and online search. During

preprocessing start and goal nodes are inserted

into abstract graph, and inter-cluster edges are

added. Then A* is used on abstract graph to find

the shortest route. During online search the

shortest route found in abstract graph is refined

to full path in initial graph using A*. To find full

path from start to goal node A* is used in every

cluster on nodes that connect clusters. Finally

partial results from every cluster are combined

into full path [20].

5.2.4 JPS (Jump point search)

This algorithm is the kind of algorithm A *so

that factor can jump over square Grid. Namely to

reduce the number of examined nodes that are in

open list, you can jump on some nodes, do not

examine all the nodes individually. Some specific

points on the grid will get special attention in

this method for example, the point of corners

Grid. JPS can be implemented as an optimization

to the A* algorithm with minor changes. JPS

excels in large, open areas of a map. It is in these

open areas that JPS can skip, or jump, over a

large number of intermediate nodes that would

otherwise be expanded using a traditional A*

algorithm [21],[22].

5.2.5 IDA *

This algorithm is similar to the algorithm

IDDFS but it use heuristics. In this method, the

cost threshold is used instead of deep threshold.

In this method, the cost f-Limit is conducted

thorough depth search. If the target node is

found, the final route is achieved. Otherwise, one

unit of f-Limit is added and search will be

iterated again. If the number of iterations are not

lot , the efficiency of this algorithm is similar to

the A*. This algorithm was presented in 1985 by

Korf [23].Like IDDFS method, a disadvantage of

this method is the searching redundancy.

6 Simulation And Comparison of

Above Algorithms

All experiments were done on a PC with intel

(2.50GHz) cpu core i5 and Ram 4G, Windows 7.

Algorithms are implemented on a2-dimension

square Grid. For Heuristic function, Manhatan

distance was used so that it is the best choice in

square Grid. | y2 - y1 |+ | x2-x1 | movement is

allowed in 8 directions. And route cost from each

node to its neighbor nodes is 1, and cost

diagonally movement line is taken ,

movement is allowed as diagonal movement.

And test for each algorithm in is repeated 100

times until possible errors will be minimized.

The grid size is 64*64. The first map, the number

of blocked nodes is 10%.But in second map, the

number of blocked nodes is 50%.

In Tables 2 and 3 . The results of the

simulation of routing algorithms in 2D Grid

environment are considerable. In these tables,

you can see run time of algorithms, the number

of traversed nodes and length of founded paths.

As you can see informed logarithms have less

execution time than uninformed logarithms and

they traverse the less number of nodes. Best

performance belongs to the HPA* algorithm and

in the second place we can put JPS. Second block

BIDDFS algorithm performance has considerably

improved by increasing the number of nodes.

Even Unlike mode 1, execution time is less than

IDA *.

236

Recebido: dia/mês/ano Aceito: dia/mês/ano

Table 2: Execution time (ms), Traversed Nodes

and Length of path with 10% blocked node in grid

map (Grid size : 64*64 blocked node : 10%)

L
e

n
g

th

T
ra

v
e

rs
d

N
o

d
e

s

E
x

e
cu

ti
o

n

ti
m

e
(m

s)

Algorithm Type

23.36 496 1.89 Dijkstra

U
n

in
fo

rm
e

d
 S

ea
rc

h

23.36 423 9.64 IDDFS

23.36 231 3.67 BIDDFS

23.36 993 7.33 BFS(Breadth)

29.31 53 2.2
Greedy Best First

Search

In
fo

rm
ed

 S
ea

rc
h

28.54 312 5.232 Ida*

23.36 46 1.96 A*

23.36 312 1.54 Jump point search

23.36 36 1.11 HPA*

Table 3: Execution time (ms), Traversed Nodes

and Length of path with 50% blocked node in grid

map (Grid size : 64*64 blocked node : 50%)

L
e

n
g

th

T
ra

v
e

rs
d

N
o

d
e

s

E
x

e
cu

ti
o

n

ti
m

e
(m

s)

Algorithm Type

16.49 1535 5.808 Dijkstra

U
n

in
fo

rm
e

d
 S

ea
rc

h

16.49 1631 56.6 IDDFS

16.49 971 35.41 BIDDFS

16.49 1521 13.335 BFS(Breadth)

21.31 86 4.205
Greedy Best First

Search

In
fo

rm
ed

 S
ea

rc
h

20 734 10.632 Ida*

16.49 98 4.016 A*

16.49 832 2.554 Jump point search

16.49 82 2.170 HPA*

237

Recebido: dia/mês/ano Aceito: dia/mês/ano

Figure 3: compare Traversed node in 2 mode

Figure 4: compare execution time in 2 mode

7 Conclusions

Using informed algorithms A* requires prior

knowledge of the target location and their

performance depends on used heuristics

function (heuristics), there are various versions

of A * Some of them cause to reduce the use of

memory, or reduce the search space such as JPS,

HPA*, IDA*and…. as we saw that HPA * had

better performance among them but efforts to

develop to be continued. However, uninformed

algorithms such as BIDDFS do not prior

knowledge about the target location but they

have higher running time. However, when there

are large number of obstacles, they have good

performance in multi-objective problems, by

using parallel processing algorithms, you can

reduce the running time and In games where

there is no prior knowledge about target

location, they can be used.

8 References

1.Cormen, Thomas H.; Leiserson, Charles E.;

Rivest, Ronald L.; Stein, Clifford (2001).

2.Ian Milington and Jon Fung ., 2009,"artificial

intelligence for games",2nd edition,,morgan

kaufman publishers,Elsevier.

238

Recebido: dia/mês/ano Aceito: dia/mês/ano

3.Brian Schwab., 2009. "AI Game Engine

Programming ", 2e,Course Technology, a part

of Cengage Learning.

4.Cui Xiao, Shi Hao., 2011,"A*-based Pathfinding

in Modern ComputerGames", (IJCSNS)

International Journal of Computer Science

andNetwork Security, 11(1).

5. Botea A, Müller M, Schaeffer J,. 2004. "Near

Optimal Hierarchical Path-Finding", Journal

of Game Development, 1(1), .pp 7-28.

6. Alex Kring, Alex J. Champandard, and Nick

Samarin., 2010. "DHPA* and SHPA*: Efficient

HierarchicalPathfinding in Dynamic and

Static Game Worlds".Proceedings of the Sixth

AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment.

7. M. R. Jansen, M. Buro,. 2007." HPA*

Enhancements". Proceedings of the Third

Artificial Intelligence and Interactive Digital

Entertainment Conference, Stanford,

California, USA.

8. Shane T. Mueller, Brandon S. Perelman,

Benjamin G. Simpkins,. 2013. “Pathfinding in

the cognitive map:Network models of

mechanisms for searchand

planning”,Elsevier.

9.Amit’sThoughts,.2009.“MapRepresentations on

pathfindig”, http://theory.stanford.edu

/~amitp/GameProgramming/MapRepresentat

ions.html.

10. Kai Li Lim, Kah Phooi Seng,. 2015."

Uninformed pathfinding: A new approach ",

Elsevier.

11. Khammapun Khantanapoka, Krisana

Chinnasarn,. 2009. ''Pathfinding of2D & 3D

Game Real-Time Strategy with Depth

Direction'', Eighth International Symposium

on Natural Language Processing.

12.Junfeng YAO, Binbin ZHANG, Qingda ZH.

,2009. ''The Optimizationof A* Algorithm in

the Practical Path Finding

Application''.WorldCongress on Software

Engineering.

13.DewanTanvir Ahmed, Shirmohammadi

Shervin, .2009. ''Intelligent PathFinding for

Avatars in Massively Multiplayer Online

Games'', IEEE Workshop on Computational

Intelligence In Virtual Enviroments.

14. Russel, S., Norvig, P,.1995. "Artificial

Intelligence: A Modern Approach" ,Prentice-

Hall, Inc.

15. Gregory,Jason ., 2009. Game Engine

Architecture , A K Peters.

16. Uwe Koch., 2011,"Applying graph

partitioning to hierarchical pathfinding in

computer games", matriculation number

9444829,Universit at Leipzig,Institut f¨ur

Mathematik und Informatik .

17.Imants Zarembo,. 2013."pathfinding algorithm

efficiency analysis in 2d grid",proceedings of

the 9thinternational scientific and practical

conference.volume 1I.

18.John.Wiley.and.Sons,,

2006.Algorithms.and.Networking.for.Comput

er.Games.

19.Game AI ,.2010. “Fixing pathfinding once and

for all”, http://www.ai-log.net/archives/

000152 .html.

20. R. C. Holte, M. B. Holte, R. M. Zimmer, A. J.

MacDonald,.1996." Hierarchical A*: Searching

Abstraction Hierarchies Efficiently". AAAI 96

Proceedings of the thirteenth national

conference on Artificial intelligence, vol. 1.

pp. 530 – 535.

21. Bryan Tanner .,2014,"Jump Point Search

Analysis".Florida State University.fsu.edu.

22. Patel, A. 2013. "Variants of A*. Retrieved

from,http://theory.stanford.edu/~amitp/Game

Programming/Variations.html, (2013, Jul 18).

23.Korf,Richard, 1985. "Depth-first Iterative-

Deepening:An Optimal Admissible Tree

Search".

24.Xu,X.(2013).Pathfinding Visual. Retrieved

fromwww.github.com:http://qiao.github.io/P

athFinding.js /visual/

http://theory.stanford.edu/
http://www.github.com/
http://www.github.com/

