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Resumo 

A velocidade terminal e deposição de material particulado sobre a superfície da terra tem sido introduzida em uma solução ana lítica da 
equação de difusão-advecção. A influência do diâmetro das partículas na distribuição da concentração ao nível do solo foi investigada em 
função de diferentes condições de estabilidade atmosférica. 
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Abstract 

The settling velocity and deposition of particulate matter on the earth’s surface has been introduced in an analytical solution of advection-
diffusion equation. The influence of particles diameters in ground level concentration distribution was investigated in function of different 
atmospheric stability conditions.  
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1 Introduction  The advection-diffusion equation is the 
mathematical language description of the 
phenomenology of atmospheric dispersion based 
on our knowledge of the phenomenon. Thus, the 
study of the behavior of its solutions allows us to 
know more about the phenomenon itself. 
Analytical solutions explicitly take into account 
the parameters of a problem, so that their 
influence can be reliably investigated. By means 
of numerical experiments, using the analytical 
solution of the advection-diffusion equation, it 
allows us to isolate and better understand 
specific behaviors. 

In this paper, we introduced the settling 
velocity in a solution of the advection-diffusion 
proposed in Costa et al. (2006) and Moreira et al, 
(2006). This allows evaluate the influence of the 
diameter of the particles on their concentration 
distribution at the ground  

2 The solution  

F The atmospheric diffusion of substances 
released from an infinite line source taking into 
account particles can be described by the 
equation, 
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where c is the integrated cross-wind 

concentration, u is the longitudinal mean wind 
speed, K is the vertical eddy diffusivity and ws  
is a constant gravitational settling velocity of the 
particles. 

By considering the dependence of the u and K 
profiles on height z, the height of the 
atmospheric boundary layer (ABL) h is 
discretized into N sub-intervals, such that within 
each interval the average values in the vertical 
are used. Therefore, the solution to equation (1) 
is reduced to the solution of N equations of the 
following type: 
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for 0<z<h and x>0, where cn denotes the 
concentration in the nth sub-interval (in this work   
ws is constant, but may be a function of z),  un 
and kn  are the vertical wind speed and vertical 
eddy diffusivity in the nth layer, respectively. 

Solution of the differential advection-
diffusion equation is a very fundamental 
approach to estimating concentrations of 
airborne pollutants, and the inclusion of 
deposition is straightforward. With gravitational 
settling and deposition and, e.g., the gradient-
transfer assumption, the required boundary 
condition at the surface is (Calder, 1961): 
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where z0   is the roughness lenght and Vd   is 

the total dry deposition velocity (at z=z0, 
K=K1=constant). Besides, the pollutants are also 
subjected to the boundary condition at the top of 
the ABL height: 
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    at   z = h                           (4) 

 
Indeed, it is assumed a source of constant 

emission rate Q: 
  (0 ) ( )sc ,z = Qδ z H    at   x = 0                  (5) 
where  sδ z H  is the Dirac delta function 

and Hs   is the source height. 
To account for vertically inhomogeneous 

turbulence (dependent on z), continuity 
conditions are imposed for the concentration and 
concentration flux at the interfaces: 
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and 
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These conditions must be considered to 
uniquely determine the 2N arbitrary constants 
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appearing in the solution to the set of equations 
defined in (2). 

At this point, it is important to mention that 
Kn, as well the un, depend only on the variable z 
and is assumed an averaged value. The stepwise 
approximation is applied in problem (1) by 
discretization of the height h into sub-layers in 
such manner that inside each sub-layer, average 
values for Kn and un are taken. This procedure 
transforms the domain of problem (1) into a 
multilayered-slab in the z direction. Concerning 
the issue of stepwise approximation, it is 
important to bear in mind that the stepwise 
approximation of a continuous function 
converges to the continuous function, when the 
stepwise of the approximation goes to zero. 
Furthermore, this approach is quite general in 
the sense it can be applied when these 
parameters are an arbitrary continuous function 
of the z variable. However, Kn and un are 
constant in each sub-layer, but the concentration 
still varies with z inside each layer. 

Applying the Laplace transform to equation 
(2) results in the following relationship: 
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where  ( , ) ( , );n p nc s z L c x z x s  , which 
has the well-known solution: 
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where ( )sH z H  is the Heaviside function 
(this last term on the right side comes from 
the particular solution and is included only in 
the region where is located the source), and 
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Finally, a linear system for the integration 
constants is generated by applying the interface 
and boundary conditions. Henceforth, the 
concentration is obtained by numerically 
inverting the transformed concentration: 
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   The integration constants An and Bn are 
previously determined by solving the linear 
system resulting from the application of the 
boundary and interfaces conditions. Due to the 
complexity of the integrand, the line integral in 
Eq. (10) is numerically solved using the Fixed 
Talbot (FT) algorithm (Abate and Valkó, 2004). 
This procedure yields the following: 
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where 
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   Moreover, r is a parameter based on numerical 
experiments and M* is the number of terms in 
the summation.  
The stepwise approximation of a continuous 
function converges to the continuous function 
when the individual steps in the approximation 
approach zero (see the work of Moreira et al., 
2014). For this study, it is necessary to choose an 
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appropriate number of sub-layers by considering 
the smoothness of the functions for K and u. This 
obtained solution is semi-analytical in the sense 
the only approximations considered along its 
derivation are the stepwise approximation of the 
parameters and the numerical Laplace inversion 
of the transformed concentration. Therefore, this 
model preserves the beauty of an analytical 
solution without compromising the accuracy of 
the wind speeds and the eddy diffusivity to 
compute the concentration.  

3 The atmospheric boundary layer 
parameterization 

In this study, the wind u is parameterized as 
a function of height z in the manner suggested 
by Panofsky and Dutton (1984): 
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where ur is the measured wind speed at a 
reference height zr and α is a constant that 
depends on the atmospheric stability. 

The unstable vertical eddy diffusivity K is 
parameterized as a function of height z 
following the work of Degrazia et al. (1997): 
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where h is the atmospheric boundary layer 
(ABL) height and w* is the convective velocity 
obtained by the expression:  

 1 3
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(k is the von Karman constant ~ 0.4). The eddy 
diffusivity parameterization is based on 
turbulent kinetic energy spectra and Taylor’s 
diffusion theory. 
   The neutral and stable conditions are 
parameterized following the work of Ulke 
(2000): 
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   This proposed eddy diffusivity profile (14) 
coincide in neutral conditions (h/L=0) and agree 
with surface layer similarity close to the surface 

4 Results and discussion  

Particle diameter between 10 and 100 
microns, different heights of emission sources 
were considered. In addition, three different 
diffusive conditions were considered: 
atmosphere unstable, neutral and stable. 

The parameters that identify the three 
stability conditions are presented in Table 1.  

 
 Table 1: Parameterizations of the three ABL 

regimes. 
 

 Convective 
ABL 

Neutral 
ABL 

Stable 
ABL 

 u 
)( 1ms  

2.5 4.5 3.5 

*u  

)( 1ms  

0.17 0.26 0.16 

1/L 
)( 1m  

-0.09 0 0.03 

α 0.07 0.015 0.35 

    
 
The settling velocity was calculated using 

the Stokes’ low (Seinfeld and Pandis, 1998) and 
the atmospheric boundary layer height was 
1000 m. 

In this study, we place the deposition rate 
equal to that of fall by gravity, to obtain 
scenarios more understandable, not masked by 
any particle materials resuspension. As an 
example of the results obtained, we are shown 
in Figures 1, 2, 3 particles concentrations at the 
ground for the three ABL regimes considered. 

Analyzing the figures, the first consideration 
that we can make is that it is true that particle 
settling velocity can be neglected for particles 
with diameter less than 10 microns, but not in 
the case of ABL stable regimes. 

Looking at the figures, we can see how the 
distributions on the ground are very different if 
we consider the settling velocity. The 
differences increase toward more stable ABL 
regimes.  
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Figure1: Ground level concentrations for 
ABL convective regime. 

 
 

 

Figure 2: Ground level concentrations for 
ABL neutral regime- 

 
 
Looking at the figures, we can see how the 

distributions on the ground are very different if 
we consider the settling velocity. The 
differences increase toward more stable ABL 
regimes.  

From the point of view of environmental 
management, it is important to outline that, 
with the increase of the particle diameter, 
increases the maximum concentration at the 
ground. 

 

 

Figure 3: Ground level concentrations for 
ABL stable regime 

5 Conclusions 

The fall velocity and deposition of particulate 
matter on the earth’s surface has been introduced 
in an analytical solution of advection-diffusion 
equation. The influence of particles diameters in 
ground level concentration distribution was 
showed in function of different ABL regimes 
(from convective to stable ABL). The first results 
show that settling velocity significantly changes 
dramatically the concentration distribution at the 
ground. In future studies, we will also 
investigate the concentration vertical profiles 
and we will try to relate the concentration 
maxima to meteorological parameters and 
source characteristics.  
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