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Resumo 

Assimilação de Dados é um procedimento matemático onde se combina dados observados com informação a priori 
(geralmente previsão de curto prazo) considerando-se o conhecimento estatístico dos erros de observação e 
previsão. Neste trabalho avalia-se a performance de uma implementação do filtro de Kalman por Conjuntos na 
assimilação de dados sintéticos com o Modelo de Lorenz. As equações de Lorenz são amplamente utilizadas para 
na avaliação de esquemas de assimilação de dados por ser um sistema de baixa dimensão, mas altamente não-
linear ou caótico, como a atmosfera terrestre. Com base nos resultados, conclui-se que, para esta implementação, 
o conjunto com 10 membros é a melhor configuração, pois com 50 e 100 membro no conjunto ocorre 
“overfitting”. Avaliou-se a eficiência do filtro ao assimilar dados com 20% e 40% de ruído e concluiu-se que com 
40% de ruído o sistema falha, principalmente no final do período de integração. Conclui-se também, que o EKF 
precisa de dados com boa amostragem temporal para resolver o problema da assimilação de dados em dinâmica 
caótica. 

Palavras-chave: Assimilação de Dados, filtro de Kalman por Conjunto, Modelo de Lorenz. 

Abstract 

Data Assimilation is a procedure to get the initial condition as accurately as possible, through the statistical 
combination of collected observations and a background field, usually a short-range forecast. In this research a 
complete assimilation system for the Lorenz equations based on Ensemble Kalman Filter is presented and 
examined. The Lorenz model is chosen for its simplicity in structure and the dynamic similarities with primitive 
equations models, such as modern numerical weather forecasting. Based on results, was concluded that, in this 
implementation, 10 members is the best setting, because there is an overfitting for ensembles with 50 and 100 
members. It was also examined if the EnKF is effective to track the control for 20% and 40% of error in the 
initial conditions. The results show a disagreement between the “truth” and the estimation, especially in the end 
of integration period, due the chaotic nature of the system.  It was also concluded that EnKF have to be 
performed sufficiently frequently in order to produce desirable results. 
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1 Introduction Numerical Weather Prediction (NWP) is an 
initial and boundary value problem, i.e. given an 
estimate of the initial state of the atmosphere, 
and appropriate surface and lateral boundary 
conditions, the future state can be predicted by 
integrating momentum equations with physical 
processes. Data Assimilation is a procedure to 
get the Initial Condition (IC) as accurately as 
possible, through the statistical combination of 
collected observations and a background field, 
usually a short-range forecast. 

Observations are collected in limited number 
of observing stations, has error in measurements 
and error of representativeness. Numerical 
models are not a perfect representation of nature 
and the earth’s atmospheric system is nonlinear, 
which introduces dynamically chaotic behavior. 
Moreover, the large number of degrees of 
freedom is an additional problem in operational 
weather forecasting. By this reason, the modern 
methods of data assimilation take into account 
the observation and background errors 
covariance. The state of art in data assimilation 
techniques are based on variational calculus and 
Kalman filter theory (e.g., Courtier et al., 1993; 
Pires et al., 1996; Gauthier, 1992; Kalman, 1960; 
Xue et al., 2013).  

The large dimension of models can prohibit 
the implementation of KF in operational NWP, 
but its implementation with simplifications, such 
as ensemble Kalman filtering  - EnKF (Evensen 
1994; Burgers et al., 1998; Whitaker et al., 2002; 
Tippet et al., 2003), ensemble transform Kalman 
filter - ETKF (Bishop et al., 2001), ensemble 
adjustment Kalman filter – EAKF (Anderson, 
2001), local ensemble Kalman filter (LEKF) (Ott 
et al., 2002, 2004), hybrid EnKF-3DVar (Gao et 
al., 2013) is possible due to the decrease in the 
computational cost. 

In accordance to Miyoshi (2005), EnKF can be 
divided into two groups: a perturbed 
observation (PO) method and a square root filter 
(SRF) method. In this research, the author 
proposes to apply an EnKF based on PO method 
to the Lorenz equations. The PO method uses an 
independent data assimilation cycle for each 
ensemble member.  In this work, likewise 

Burgers et al. (1998), the members of the 
ensemble was created adding a random 
Gaussian noise to the model equations. Due the 
random generation of the member, different 
implementation of EnKF must be available.  

The main objective of this research is to 
examine the behavior of EnKF for different 
ensembles size, evaluate error in the IC and 
explore the assimilation over-determined by lack 
of observation.  

Section 2 describes a brief theoretical 
formulation of Lorenz equations; Section 3 
presents a basic introduction to EnKF; numerical 
experiments are shown in Section 4 and finally 
Sections 5 contains the concluding remarks. 

2 The Lorenz Equations 

Lorenz (1963) was looking for the periodic 
solutions of the Saltzman's model (Saltzman, 
1962), considering a spectral Fourier 
decomposition and taking into account only low 
order terms. Lorenz obtained the following 
system of nonlinear coupled ordinary 
differential equations 

)( YXddX      (1) 

ZXYrXddY     (2) 

bZYXddZ /    (3) 

where taH  )1( 222    is the non-
dimensional time, being H, a,   and t 
respectively the layer height, thermal 
conductivity, wave number (diameter of the 
Rayleigh-Bérnard cell), and time;  1  is the 
Prandtl number (  is the kinematic viscosity); 

12 )1(4  ab . The parameter TRRr c   is 
the Rayleigh number (T is the temperature), and 
Rc is the critical Rayleigh number. 

3 Ensemble Kalman Filter 

Kalman filter is the best linear unbiased 
estimator for a linear model under Gaussian 
assumption for the measurements and model 
random errors.  The Kalman filter method 
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applied to nonlinear models is called the 
Extended Kalman Filter (EKF), given by two 
step, as follow: 

1. Forecast step 
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where f
nF  is our mathematical model, n  is the 

stochastic forcing (modeling noise error), 
subscripts n denotes discrete time-step, and 
superscripts  f  represents the forecasting value. 
The observation system  n

f
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modeled by H matrix, and n  is the noise 
associated to the observation. The typical 
gaussianity, zero-mean and ortogonality 
hypotheses for the noises are adopted. The state 
vector is defined as T

nnnn ZYXw ],,[ 1111   , and it is 
estimated through the recursion 
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nw 1  is 
the analysis value, Kn is the Kalman gain, 
computed from the minimization of the 
estimation error variance Jn+1, (Jazswinski, 
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the expected value, Qn is the covariance of  n  
and Rn is the covariance of n . The assimilation 
is done through the sampling: 
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stars with a poor initial guess of the state of the 
atmosphere, the EKF may go through an initial 
transient period of a week or so, after which it 
should provide the best unbiased estimate of the 
state of the atmosphere and its error covariance 
(Kalnay, 2004).”  However, in according Miller et 
al. (1994), if the system is very unstable, and the 
observation are not frequent enough, it is 
possible for the linearization to became 
inaccurate, and the EKF may drift away from the 
true solution.  

The updating of Eq. (5) provides the errors of 
the day, but its computational cost makes this 
updating  impossible in practice to carry out. 

Therefore the Eq. (5), has been replaced by the 
use of simplifying assumptions, such as 
ensemble mean. In this work is proposed an 
ensemble Kalman filter which consist of replace 
the forecast error covariance (Eq. 5) by: 

 

 

where the ensemble has K data assimilation 
cycles. 

4 Numerical experiments 

In the results explored forward from here, the 
Lorenz equations are solved by finite-differences 
with a non-dimensional time increment 0.01 for 
500 time-steps integration length. According to 
Lorenz (1963) at the give σ = 10 and b = 8/3, the 
corresponding Rayleigh number is 24.74, which 
means that r larger than 24.74 will make the 
system a chaotic one. In this paper only the 
variable X is depicted, just because Y and Z take 
to the same conclusions. 

Before to presents the results, the author 
show the sensitivity of the model to the initial 
conditions. In Figure 1a, is depicted the resulting 
model state trajectories for σ = 10, b = 8/3 and r = 
10, assuming the IC to be X0 = 1.00, Y0= 3.00, Z0 = 
5.00 (Case 1) and assuming IC to be X0 = 1.10, Y0 
= 3.30, Z0 = 5.50 (Case 2). It means that Case 1 
differ from Case 2 with an offset of 10% of noise 
for all model variables. In Figure 1b, this 
experiment is redo for chaotic regime (r = 32), 
Case 3 and Case 4. 

This simple experiment show that for r = 10, 
the trajectories of Case 1 and Case 2 remain very 
close to each other during the integration period. 
By other side, for r = 32, the bifurcation in model 
solution occur throughout the integration period. 
This experiment illustrates the sensitivity of the 
chaotic system to IC.  

The purpose of the experiments presented 
below is to explore the ideas delineated in the 
EnKF methodology. 
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                               ( b ) 

Figure 1. Resulting model state trajectories for σ 
= 10, b = 8/3 and r = 10, assuming the IC to be X0 = 
1.00, Y0= 3.00, Z0 = 5.00 (Case 1) and assuming IC 

to be X0 = 1.10, Y0 = 3.30, Z0 = 5.50 (Case 2). It 
means that Case 1 differ from Case 2 with an 

offset of 10% of noise for all model variables. In 
Figure 1b, this experiment is redone for chaotic 

regime (r = 32), Case 3 and Case 4. 
 

4.1 EXPERIMENT 1 – Evaluation of Ensemble 
Size in the EnKF 
 

The goal of this experiment is to show the 
impact of the ensemble size in the results of 
EnKF implemented in the Lorenz equations. 
Figure 2 plots the Control (X0 = 1.00, Y0 = 3.00, Z0 
= 5.00, r = 32 – chaotic regime), Case 4 above (X0 = 
1.10, Y0 = 3.30, Z0 = 5.50, r = 32 – chaotic regime) 
for 2, 10, 50 and 100 ensemble sizes, and three 
model state observations available during 
“observation window”. It was assumed that this 
observation have a Gaussian randomly 
distributed error of the maximum 10%. By the 

figure can be seen that the EnKF is able to keep 
the system stable, but is not possible to conclude 
which ensemble size is the best one. Then in Tab. 
1, Root Mean Square (RMS) is presented for all 
ensemble sizes tested. It could be concluded that 
more than 10 member does make any 
improvement in the estimation, due the 
overfitting caused by large ensembles sizes. 
 

 
                                 ( a ) 
 

 
                               ( b ) 
 

 
                               ( c ) 
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Figure 2 - Control (X0 = 1.00, Y0 = 3.00, Z0 = 5.00, r 
= 32 – chaotic regime), Case 4 above (X0 = 1.10, Y0 
= 3.30, Z0 = 5.50, r = 32 – chaotic regime) for 2, 10, 
50 and 100 ensemble sizes, and three model state 

observations available during “observation 
window”. 

 
Table 1: Root Mean Square for all three Lorenz 

variables. 
Ensemble 

Size 
(members) 

2 10  50  100 

RMS 2.014 1.678 1.751 1.818 
 
 
4.2 EXPERIMENT 2 – Evolution of the EnKF for 
poor IC 

 
In this experiment, shown in Fig. 4, EnKF 

assimilates the same evolution trajectories as the 
EXPERIMENT 1, but the initial guess is rather 
poor, 20% (X0 = 1.20, Y0 = 3.60, Z0 = 6.00) and 40% 
(X0 = 1.40, Y0 = 4.20, Z0 = 7.00). 

One may observe, from plots in Fig. 3, that 
with 20% of noise, the differences between the 
simulated trajectories and the observations as 
well as “true trajectories” are rather small. 
However, the differences are increasingly 
significant at the later part of the integration 
period, due the chaotic behaviour of the system. 
However, for the case with 40% error in the IC, 
the EnKF is not able to track the Control with 
only 3 observation ingested. In fact, given 40% 
error in the IC, the chaotic nature of model 
solution, demands for a relatively large number 
of observations.                                                     
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Figure 3 – EnKF assimilates the same evolution 
trajectories as the EXPERIMENT 1, but the initial 
guess is rather poor, 20% (X = 1.20, Y = 3.60, Y = 

6.00) and 40% (X = 1.40, Y = 4.20, Y = 7.00). 
 

 
4.3 EXPERIMENT 3 – Assimilation over-
determined by lack of observation 
 

Numerical Weather Forecasting is of the order 
of 166-107 degrees of freedom, whereas the total 
number of conventional observation of the 
variables used in the models is of the order of 104 
(Kalnay, 2004). Considering this fact, the amount 
of variables observation applied hitherto is 
somewhat overestimated. By this reason, the 
Experiment 3 represents a more realist 
assimilation application, where the EnKF ingest 
a single observation at 180th time-step in the X, Y, 
and Z Lorenz variables (Fig. 4a) and only in X 
variable (Fig. 4b). Better results are obtained for 
the case that observations cover all the 
components of the model vector. Although,  
there is a considerable disagreement between the 
EnkF trajectories and the control. 

 
5 Final remarks  

In this research an EnKF was available in a 
data assimilation context in chaotic regime. This 
methodology was tested for different ensemble 
sizes, 2, 10, 50, and 100 members. Based on the 
results it was concluded that, in this 
implementation, 10 members is the best setting, 
because there is an overfitting for ensembles 
with 50 and 100 members. It was also examined 
if the EnKF is effective to track the Control for 
20% and 40% of error in the Initial Conditions. 

The results show a disagreement between the 
“truth” and the estimation, especially in the end 
of integration period, due the chaotic nature of 
the system. In an experiment where the authors 
explore the assimilation over-determined by lack 
of observations, the results show that EnKF 
needs for more frequent observations. Data 
assimilation systems based on EnKF must to be 
exhaustively evaluated due the random 
generation of the members. This work does this 
task, however additional difficulties due the high 
dimension of numerical weather prediction 
systems must be investigated. 
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                                    ( b ) 
Figure 4 - EnKF ingest a single observation at 

180th time-step in the X, Y, and Z Lorenz 
variables (Fig. 4a) and only in X variable (Fig. 

4b). 
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