DOI: 10.5902/2179460X11636

Revista do Centro de Ciências Naturais e Exatas - UFSM

Revista Ciência e Natura, Santa Maria

EISSN: 2179-460X, Edição Esp. Dez. 2013, p. 303 - 305

EFEITOS DA NEBULOSIDADE NA ABSORÇÃO DE CARBONO EM UMA CULTURA DE MILHO EM CRUZ ALTA, RS

Leonardo J. G. Aguiar¹, José M. N. Costa¹, Débora R. Roberti², Williams P. M. Ferreira³, Claudio Teichrieb², Graciela R. Fischer⁴, Evandro C. Oliveira⁵, Osvaldo L. L. Morais²

¹Embrapa Amapá, AP, Brasil

²Universidade Federal de Santa Maria, RS, Brasil

³Embrapa Milho e Sorgo, MG, Brasil

⁴Universidade Federal de Pelotas, RS, Brasil

⁵Instituto Federal do Espírito Santo, ES, Brasil

veraneiro@yahoo.com.bbr

RESUMO

Foram realizadas medições no período de 11 de novembro de 2010 a 19 de fevereiro de 2011 de variáveis meteorológicas e fluxo de dióxido de carbono (CO₂), através da técnica de covariância dos vórtices turbulentos, com o intuito de analisar a influência da nebulosidade na absorção do C em uma cultura de milho em Cruz Alta, RS. Observou-se maior absorção de C a níveis intermediários de cobertura de nuvens.

SUMMARY

Measurements were performed from 11 November 2010 to 19 February 2011 of meteorological variables and carbon dioxide (CO₂) flux using the technique of eddy covariance in order to analyze the influence of cloudiness on the absorption of C in a maize crop in Cruz Alta, RS. We observed a higher absorption of C at intermediate levels of cloud cover.

INTRODUÇÃO

A fotossíntese é fortemente relacionada à disponibilidade de radiação fotossinteticamente ativa (PAR). Recentes estudos teóricos e observacionais têm demonstrado que a fotossíntese é mais eficiente sob condições de luz difusa (OLIVEIRA et al., 2007), com o céu parcialmente nublado.

Entender como a nebulosidade afeta a fotossíntese e, consequentemente, a absorção de carbono em uma cultura de milho no Rio Grande do Sul é de grande importância para o desenvolvimento/adaptação de modelos de ecossistemas agrícolas para o Sul do Brasil.

Objetivou-se nesse estudo analisar a influência da nebulosidade na absorção de C em uma cultura de milho.

MATERIAL E MÉTODOS

O presente trabalho foi realizado no sítio experimental pertencente à Rede SULFLUX, situado na FUNDACEP (28°36' S; 53°40' O; 409 m de altitude), localizada no município de Cruz Alta, no Estado do Rio Grande do Sul.

Foram realizadas medições contínuas no período de 11 de novembro de 2010 a 19 de fevereiro de 2011 de irradiância solar global (Rs, piranômetro LI-COR (LI200SA)) e PAR

Revista do Centro de Ciências Naturais e Exatas - UFSM

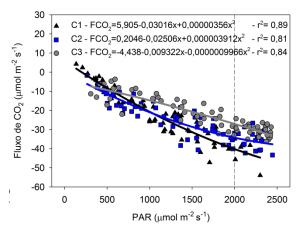
Revista Ciência e Natura, Santa Maria

EISSN: 2179-460X, Edição Esp. Dez. 2013, p. 303 - 305

(PAR, quantum LI-COR (LI190SA)) acima do dossel da cultura, bem como umidade volumétrica do solo (U_{solo} , Sonda helicoidal TDR (Time Domain Reflectometry)) na camada de 0 a 30 cm de profundidade.

As medições de fluxo de CO₂ foram realizadas através da técnica de covariância de vórtices turbulentos, utilizando um analisador de gás por infravermelho de caminho aberto (LI-7500), fabricado pela LI-COR Inc., e um anemômetro sônico (CSAT3 3-D), fabricado pela *Campbell Scientific Instrument*, ambos instalados a 2,5 metros de altura da superfície.

Para medir a área foliar, foi utilizado o integrador de área foliar LI3000A, fabricado pela LI-COR Inc, com periodicidade média de 15 dias.


RESULTADOS E DISCUSSÃO

Para avaliar os efeitos da nebulosidade na absorção de C pela cultura do milho, foram utilizados nove dias de dados após o fechamento do dossel (Tabela 1), os quais foram separados em três classes de cobertura de nuvens: primeira (C1), k_t (razão entre Rs e a radiação solar extraterrestre) variando entre 0,5 e 0,6; segunda (C2), k_t variando entre 0,6 e 0,7; e terceira (C3), k_t variando entre 0,7 e 0,8. Os dias utilizados foram escolhidos devido à proximidade nas condições de umidade do solo. A C1 apresentou uma diminuição de aproximadamente 13% na absorção de C em relação a C3, acompanhando a redução de cerca de 27% da PAR.

Tabela 1. Valores diários do índice de claridade (k_t , adimensional), fluxo de carbono (F_c , gC m^{-2} d^{-1}), índice de área foliar (IAF, m^2 m^{-2}), radiação fotossinteticamente ativa (PAR, MJ m^{-2} d^{-1}) e umidade do solo (U_{solo} , m^3 m^{-3})

Clas-se	Dia Juliano	DAE	kt	Fc	IAF	PAR	Usolo
	255						
	355	73	0,56	-8,93	4,17	11,12	0,45
C1	3	86	0,55	-7,35	4,39	10,29	0,39
	4	87	0,53	-7,00	4,40	10,33	0,41
	356	74	0,62	-10,79	4,20	12,07	0,43
C2	364	82	0,69	-10,27	4,36	13,46	0,33
	365	83	0,66	-10,03	4,37	12,81	0,32
	343	61	0,76	-8,34	3,37	14,34	-
C3	349	67	0,76	-8,92	3,88	14,48	0,44
	360	78	0,77	-9,53	4,30	14,62	0,38

Na C2, apesar das menores quantidades de umidade do solo (12,2%) e da PAR (\approx 12%), devido à maior cobertura de nuvens, a absorção de carbono foi cerca de 16% superior em relação a C3, o que provavelmente ocorreu devido a maior absorção de CO₂ encontrada em dias mais nublados, menor k_t , para uma mesma quantidade de PAR (Figura 1).

Figura 1. Relação entre a PAR e o fluxo de CO₂ nas três classes avaliadas.

DOI: 10.5902/2179460X11636

Revista do Centro de Ciências Naturais e Exatas - UFSM

Revista Ciência e Natura, Santa Maria

EISSN: 2179-460X, Edição Esp. Dez. 2013, p. 303 - 305

Essa maior absorção do CO₂ em dias mais nublados ocorre provavelmente devido à maior quantidade de radiação que chega a níveis mais baixos do dossel, em que as folhas são mais eficientes no uso da radiação (URBAN et al., 2007). Gu et al. (1999) relatam que para que a mesma quantidade de PAR obtida em dias claros ocorra em dias nublados geralmente o sol deve estar em elevações maiores, o que favorece a penetração da radiação no dossel.

CONCLUSÕES

A magnitude dos fluxos de C da cultura apresentou dependência com relação à nebulosidade, havendo maior absorção de carbono a níveis intermediários de cobertura de nuvens, ocasionada pela maior quantidade de radiação que chega a níveis mais baixos no dossel.

AGRADECIMENTOS

Agradecemos aos estudantes bolsistas da Universidade Federal de Santa Maria pela coleta dos dados. O primeiro autor agradece a CAPES pelo apoio financeiro dado através da concessão de bolsa de doutorado.

BIBLIOGRAFIA CITADA

GU, L.; et al. Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: Results from two North American deciduous forests, **Journal of Geophysical Research**, 104, 31,421–31,434, 1999.

OLIVEIRA, P. H. F.; et al. The effects of biomass burning aerosols and clouds on the CO₂ flux in Amazonia. *Tellus B.*, v. 59, p. 338-349, 2007.

URBAN, O.; et al. Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. **Global Change Biology**, v. 13, p. 157–168, 2007.