DOI: 10.5902/2179460X11554

Revista do Centro de Ciências Naturais e Exatas - UFSM

Revista Ciência e Natura, Santa Maria

EISSN: 2179-460X, Edição Esp. Dez. 2013, p. 087 - 089

POSSÍVEIS RELAÇÕES ENTRE A VARIABILIDADE INTERANUAL DO GELO MARINHO ANTÁRTICO E A PRECIPITAÇÃO NA AMÉRICA DO SUL

Camila B. Carpenedo¹; Tércio Ambrizzi¹; Luis A. L. Aímola²

¹Departamento de Ciências Atmosféricas - IAG/USP ²Instituto Tecnológico Vale - Desenvolvimento Sustentável e-mail: carpenedo@model.iag.usp.br

RESUMO

Investigamos as diferenças na circulação atmosférica do Hemisfério Sul em extremos interanuais de retração e expansão de gelo marinho antártico e as possíveis relações com a precipitação na América do Sul. Os resultados mostram que, com a retração de gelo marinho no mar de Weddell e Bellingshausen-Amundsen (mar de Ross), houve uma redução (aumento) de precipitação no Nordeste do Brasil. Na região Sul, houve um aumento associado aos mares de Bellingshausen-Amundsen. Estas relações não foram tão evidentes através das células de circulação meridional, mas através de padrões de teleconexão barotrópico equivalente de latitudes extratropicais.

ABSTRACT

We investigated the differences in atmospheric circulation in the Southern Hemisphere in interannual extreme of retraction and expansion of Antarctic sea-ice and possible relationships with precipitation in South America. The results show that with the decrease of sea-ice in the Weddell and Bellingshausen-Amundsen seas (Ross Sea) there was an decrease (increase) of precipitation in Northeast Brazil. In the South there was an increase associated with the Amundsen-Bellingshausen Seas. These relationships were not as evident through the cells of meridional circulation, but through equivalent barotropic teleconnection patterns in extratropical latitudes.

INTRODUÇÃO

A América do Sul possui uma economia altamente dependente da agricultura. Tanto fatores locais quanto regionais e remotos podem contribuir para as condições meteorológicas e climáticas nas regiões produtoras. Assim, o objetivo deste estudo foi investigar as diferenças na circulação atmosférica do Hemisfério Sul em extremos interanuais de retração e expansão de gelo marinho (GM) antártico e as possíveis relações com a precipitação na América do Sul, com enfoque sobre o Brasil.

MATERIAL E MÉTODO

Para o período de 1989 a 2007 foram utilizados os campos de superfície até a alta troposfera das reanálises do *ERA-Interim* (ECMWF *Data Server*); precipitação do *Global Precipitation Climatology Project* (GPCP), versão 2.2, e radiação de onda longa emergente (ROLE) da NOAA; extensão de GM do *National Snow and Ice Data Center* (Universidade do Colorado) para cada setor do Oceano Austral: mar de Weddell (MW, 60° W a 20° E), Oceano Índico (OI, 20° E a 90° E), Oceano Pacífico Oeste (OPW, 90° E a 160° E), mar de Ross (MR, 160° E a 130° W) e mares de Bellingshausen-Amundsen (MBA, 130° W a 60° W). As anomalias de GM (sem tendência linear e ciclo anual) foram filtradas utilizando a transformada rápida

DOI: 10.5902/2179460X11554

Revista do Centro de Ciências Naturais e Exatas - UFSM

Revista Ciência e Natura, Santa Maria

EISSN: 2179-460X, Edição Esp. Dez. 2013, p. 087 - 089

de Fourier, no período superior a 365 dias (escala interanual). Para o verão (JFM), foram feitas composições dos campos atmosféricos e de superfície para anos com as cinco maiores anomalias interanuais negativas *menos* anos com as cinco maiores anomalias interanuais positivas de GM (Tabela 1), conforme a metodologia descrita por Pezza et al. (2008). A significância estatística dos campos de diferença foi obtida através do teste t-Student, ao nível de 10% ($\alpha=10\%$).

Tabela 1 - Anos utilizados para as composições dos campos atmosféricos e de superfície em relação aos extremos de GM para cada setor do Oceano Austral.

	Anomalias Negativas	Anomalias Positivas
$\mathbf{M}\mathbf{W}$	1989, 90, 93, 99 e 02	1991, 92, 95, 03 e 04
OI	1991, 92, 97, 01 e 03	1989, 93, 95, 00 e 07
OPW	1990, 93, 01, 02 e 06	1994, 95, 96, 97 e 99
MR	1992, 97, 04, 05 e 06	1989, 96, 99, 01 e 03
MBA	1989, 92, 98, 03 e 07	1991, 00, 02, 04 e 05

RESULTADOS E DISCUSSÃO

Em extremos de retração de GM nos MBA, MR, OI e OPW, foi observado um leve deslocamento para sul do ramo ascendente da célula da Hadley, apresentando uma intensificação na região equatorial (α>10%).

No Pacífico Equatorial, houve um aumento da temperatura da superfície do mar (TSM, α >10%), uma redução da pressão ao nível do mar (PNMM, α =1%) e uma intensificação da convergência em 1000 hPa (α >10%) (figuras não apresentadas), o que contribuiu para uma maior atividade convectiva (α =10%) e um aumento na precipitação (α =10%) (Figuras 1b, 1c).

A altura geopotencial em 500 (GEO500) e em 200 (GEO200) hPa foi positiva (α =1%) (figuras não apresentadas), possivelmente em consequência do aumento da temperatura na média e alta troposfera associado à liberação de calor latente anômala, padrão indicativo de atividade convectiva atípica. Sobre a região Norte do Brasil, associado à retração de GM nos MBA e OI, a divergência em 200 hPa foi negativa (α >10%), inibindo a convecção (α =10%) e, assim, a precipitação (MBA: α =10%; OI: α >10%).

Na região Nordeste, em relação ao GM nos MBA e OPW (OI e MR), houve uma menor (maior) precipitação (α >10%, com exceção do MR, α =10%) associada a uma menor (maior) convecção (α =10%). Na Região Sul o efeito foi oposto ao Nordeste.

Em extremos de retração de GM no setor do MW houve certo deslocamento para norte do ramo ascendente da célula de Hadley e um enfraquecimento no Equador (α >10%) (figuras não apresentadas). No Pacífico Equatorial, houve um resfriamento da TSM (α >10%) e um aumento da divergência em 1000 hPa (α >10%) (figuras não apresentadas), inibindo a atividade convectiva (α =10%) e a precipitação (α =10%) (Figura 1a). Sobre o Norte e Sul do Brasil, o aumento do movimento ascendente (α >10%) contribuiu para uma maior convecção (α =10%) e precipitação (α =10%). O efeito foi contrário na região Nordeste (α =10%). Os campos de diferença de PNMM, GEO500 e GEO200 em relação ao GM em todos os setores do Oceano Austral revelam uma estrutura barotrópica equivalente nas latitudes extratropicais.

DOI: 10.5902/2179460X11554

Revista do Centro de Ciências Naturais e Exatas - UFSM

Revista Ciência e Natura, Santa Maria

EISSN: 2179-460X, Edição Esp. Dez. 2013, p. 087 - 089

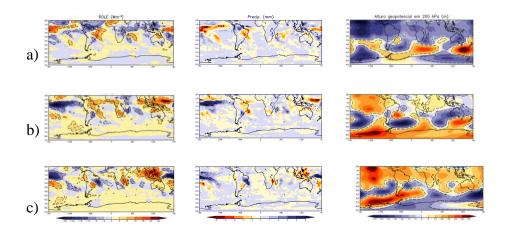


Figura 1: Composições de ROLE (Wm²), precipitação (mm) e GEO200 (m) para os setores do (a) MW, (b) MBA e (c) MR. As regiões pontilhadas são significativas ao nível de 10% (ROLE e precipitação) e 1% (GEO200).

CONCLUSÕES

A relação da precipitação sobre a América do Sul com extremos de retração/expansão de GM é distinta nos diferentes setores do Oceano Austral. Com a retração de GM no MR (MBA e MW) houve um aumento (diminuição) de precipitação sobre o Nordeste do Brasil. Sobre a região Sul houve um aumento de precipitação em relação à retração de GM nos MBA. O ramo ascendente da célula de Hadley deslocou-se levemente para sul associado aos extremos de retração de GM na maioria dos setores do Oceano Austral, o que está de acordo com o fato de que a Zona de Convergência Intertropical se desloca em direção ao hemisfério mais quente. Contudo, as composições não apresentaram significância estatística, o que poderia indicar que essa relação não seja tão evidente através das células de circulação meridional, mas sim através de padrões de teleconexão barotrópico equivalente de latitudes extratropicais.

REFERÊNCIAS

PEZZA, A. B.; DURRANT, T.; SIMMONDS, I.; SMITH, I. Southern Hemisphere synoptic behavior in extreme phases of SAM, ENSO, sea ice extent, and southern Australia rainfall. **J Climate**, v. 21, p. 5566-5584, 2008.