Estimativa do *footprint* de torres em área de platô e baixio na Reserva Cuieiras, Amazônia Central

Veber Moura¹, Celso von Randow¹, Antonio Ocimar Manzi¹

¹Instituto Nacional de Pesquisas da Amazônia - INPA/LBA e-mail: vebermoura@gmail.com

1. Introdução

Desde 1999 os fluxos de CO₂ e energia são medidos na Reserva Cuieiras, 60 km ao norte de Manaus, no sítio experimental K34, em uma torre instalada sobre uma área de platô, utilizando a técnica da Covariância dos Vórtices Turbulentos - CVT. Com o objetivo de se estudar a variabilidade espacial dos fluxos na escala local e aprimorar as medidas sujeitas as condições de heterogeneidade da floresta de terra firme na Amazônia, uma segunda foi instalada numa área de baixio, a partir de maio de 2006. Um importante aspecto a ser estudado em relação à comparação das duas torres é o *footprint*, que define o contexto espacial das medidas dos fluxos de cada uma. Trata-se de algo semelhante ao "campo de visão" ou "área de influência" do que é medido pelas torres. Numa superfície homogênea, a localização do sensor não é um problema, porque os fluxos de todas as partes são por definição iguais. No entanto, se a superfície é heterogênea o fluxo medido depende de qual parte da superfície tem maior contribuição sobre os sensores (Schmid,1997, 2002).

O objetivo deste estudo foi avaliar o *footprint* das duas torres (K34 e B34), avaliando-se a representatividade dos fluxos medidos em cada uma, em consideração à heterogeneidade da floresta de terra firme e do gradiente topográfico (platô, vertente e baixio).

2. Material e métodos

2.1 Área de estudo e coleta de dados

O estudo foi conduzido na Reserva Biológica do Cuieiras, localizada a 60 km ao norte de Manaus. Os dados foram coletados em duas torres distantes aproximadamente 600 m uma da outra. A primeira denominada K34 localizada no platô e a segunda denominada B34, localizada no baixio. A figura 1 mostra a topografia local e a posição das torres, e a distribuição de freqüências de direção de vento observada no sítio. Observa-se que os ventos são predominantemente de leste (60° a 90°).

2.2 Estimativa do footprint

Para estimar o *footprint* das torres foi utilizado o modelo proposto por Hsieh *et. al.* (2000). Baseado na combinação de resultados do modelo de dispersão Lagrangiana estocástica os autores encontraram a partir das análises dimensionais que x/|L| pode ser expresso como

$$\frac{x}{|L|} = \frac{-1}{k^2 \ln(F/S_0)} D(z_u / |L|)^P$$
(1)

onde k = 0.4 é a constante de von Karman, D e P são cosntantes de similaridade, e z_{μ} é uma escala de comprimento definida como

$$zu = zm \left(\ln \left(zm / zo \right) - 1 + zo / zm \right)$$
(2)

onde z_0 é o comprimento de rugosidade. A relação F/S_0 representa a contribuição cumulativa relativa ao fluxo na distância x do vento que chega a torre. Uma contribuição de 90% é representada por $F/S_0 = 0.9$. Usando os resultados de um modelo Lagrangiano o *footprint* pode ser calculado com os valores de z_m , z_0 e L. Hsieh *et al.* (2000) encontrou D = 0.28 e P = 0.59para condições instáveis e D=2.44 e P=1.33 para condições estáveis.

Figura 1. (a) Topografia do sitio experimental da Reserva Biológica do Cuieiras, com a posição das torres de platô (K34) e baixio (B34). (b) Distribuição de freqüências de direção do vento.

Ciência e Natura Especial, UFSM

3. Resultados e discussão

As estimativas do *footprint* utilizando o modelo de Hsieh *et al.* (2000) para condições estáveis e instáveis em ambas as torres são mostradas na figura 2. Os pontos indicam as distâncias horizontais representando uma contribuição acumulada de 90% aos fluxos medidos. A figura 2a mostra as condições instáveis pra B34. Nota-se que as áreas de influência para os fluxos são bem próximas da torre. Para condições estáveis (fig. 2b) o modelo indica possíveis contribuições de áreas distantes até 2.5 km. Considerando-se, porém, a proximidade das áreas de encosta, podemos dizer que estes resultados não tem significado físico. Na figura 2c observa-se que, para condições instáveis, a torre K34 é influenciada por áreas um pouco mais distantes que pra B34, mas ainda assim próximas à torre (platô). A figura 2d mostra que o footprint da K34 para condições estáveis atinge distâncias maiores que 2 km, sofrendo claramente contribuições das regiões de baixios.

Figura 2. Cálculo do *footprint* para: (a) B34 para condições instáveis. (b) B34 para condições estáveis. (c) K34 para condições instáveis. (d) K34 para condições estáveis.

V Workshop Brasileiro de Micrometeorologia

4. Conclusões

Os resultados indicam que as comparações de sinais de baixio versus platô usando as duas torres é mais adequada para condições instáveis. Em condições estáveis, o footprint da K34 é bastante influenciado por áreas de baixio e a heterogeneidade do sítio adiciona complexidade às análises.

5. Referências bibliográficas

Hsieh, C.-I, Katul, G., Chi, T., 2000. An approximate analytical model for footprint estimation of scaler fluxes in thermally stratified atmospheric flows. *Adv. Water Resour.*, **23**, 765–772.

Schmid, H.P., 2002. Footprint modeling for vegetation atmosphere exchange studies: a review and perspective. *Agric. For. Meteorol.*, **113**, 159–183.

Ciência e Natura Especial, UFSM