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Solução fechada para um modelo de crescimento econômico

logístico com migração constante

Closed-form solution to an economic growth logistic model with constant
migration

Resumo

Neste trabalho consideramos o modelo de crescimento econômico de Solow-Swan com a mão-de-obra governada pela equação

logística adicionada por uma taxa de migração constante, I. Provamos a estabilidade assintótica global do capital e produto

per capita. Considerando uma função de produção de Cobb-Douglas, mostramos que este modelo admite uma solução fechada,

expressa em termos das funções especiais Beta e de Appel F1. Também mostramos, através de simulações, que quando I > 0,

o modelo apresenta um menor nível de capital e produto per capita no curto prazo; mas apresenta um maior nível de capital e

produto per capita no médio e longo prazos. Em ambos os casos, estas variáveis per capita convergem para o mesmo estado de

equilíbrio do modelo sem migração. Se I < 0, o comportamento transiente é o oposto. Finalmente, se I = 0, então recuperamos

a solução do modelo logístico puro, envolvendo a função hipergeométrica de Gauss 2F1.

Palavras-chave: Modelo de crescimento econômico de Solow, Crescimento logístico da mão-de-obra, Migração, Função Beta,

Função de Appell.

Abstract

This paper considers a Solow-Swan economic growth model with the labor force ruled by the logistic equation added by a

constant migration rate, I. We prove the global asymptotic stability of the capital and production per capita. Considering a

Cobb-Douglas production function, we show this model to have a closed-form solution, which is expressed in terms of the Beta

and Appell F1 special functions. We also show, through simulations, that if I > 0, it implies in a smaller capital and product

per capita in the short term, but in a higher capital and product per capita in the middle and long terms. In both cases, these per

capita variables converge to the same steady-state given by the model without migration. If I < 0 the transient behavior is the

opposite. Finally, if I = 0, we recover the solution for the pure logistic case, involving Gauss’ Hypergeometric Function 2F1.
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1 Introduction

The main assumption of the Solow-Swan model for eco-

nomic growth (Solow, 1956; Swan, 1956) is that labor
force obeys the Malthusian Law. Adding to it a Cobb-

Douglas production function, the resulting model has
a well known analytical solution. But such an unboun-

ded exponential rise is unrealistic in some cases, im-

plying an overestimation of the real economic growth:
therefore recent works have replaced the Malthusian

Law by increasing but bounded population growth mo-

dels. Donghan (1998) proposed the replacement of the
Malthusian Law by the Verhulst (logistic) Law in the

Solow-Swan model, without actually solving it, but pro-
ving the reaching of a steady state. In the same paper,

he proves a comparison, a limit and a stability theo-

rem for the capital per capita evolution, assuming a
strictly increasing and bounded labor force. Following

Donghan (1998), Mingari Scarpello e Ritelli (2003)
showed that the Solow-Swan model with a logistic po-

pulation law has a closed-form solution in terms of the

Gauss’ Hypergeometric function 2F1. Maldonado e Brida
(2007) considered afterwards the Von Bertalanffy Law

which also gave raise to a closed-form solution invol-
ving 2F1, and Accinelli e Brida (2005) introduced the Ri-

chards Law (a generalized logistic model).

Juchem Neto e Claeyssen (2015a) also considered a lo-
gistic population law in a Spatial Solow Model, and in

a recent work (Juchem Neto et al., 2015b), showed that
the addition of a constant migration rate in the standard

Solow model (Solow, 1956; Swan, 1956), with an expo-

nentially growing labor force (Malthusian Law), admits
a closed-form solution in terms of the Gauss’ Hyperge-

ometric function 2F1.

Following the methodology presented in
Juchem Neto et al. (2015b), in this work we consider a

constant migration rate I in the extended model propo-

sed by Mingari Scarpello e Ritelli (2003), which consi-
ders a logistic growth for the labor force, and show that

this model has a closed-form solution in terms of the
Beta and F1 Appell’s functions, provided I > − α2

4β . In

the following section we review the Solow-Swan-

Verhulst Model with Cobb-Douglas production, and in

section 3 we discuss the stability and steady-state of the
capital and output per capita, and solve the model mo-

dified by a constant migration term. In section 4 we
carry out some simulations for a set of parameter and

discuss the results. Finally, section 5 provides our con-

clusions.

2 The Solow model with a logistic

labor force growth

Mingari Scarpello e Ritelli (2003) have shown that the

Solow-Swan growth model, considering a Cobb-Douglas
production function and a logistic growth law for the

labor force, has a closed-form solution in terms of the
Gauss’ Hypergeometric function 2F1. The production

function considered by them was:

Y = AL(t)kϕ(t), (1)

where A > 0 is a constant technological parameter, ϕ ∈
(0, 1) is the output elasticity of capital (ϕ closer to 0

means a labor intensive economy, and ϕ closer to 1 a

capital intensive one), and:

L(t) =
αL0eαt

α + βL0 (eαt − 1)
(2)

is the labor force at time t, which is solution of the

Verhulst (logistic) equation:

L̇ = L(α − βL), L(0) = L0 > 0. (3)

Here, α > 0 is called the intrinsic growth rate, β > 0 the

crowding coefficient, and:

K = lim
t→∞

L(t) =
α

β
(4)

is the environment’s carrying capacity, that is, the maxi-

mum labor force that the economy can hold. In addi-

tion, they supposed α > β, and implicitly L0 < K, in
order to have an asymptotically increasing, and boun-

ded from above, population.
The capital per capita, k(t), is solution of the Bernoulli

ordinary differential equation:

{

k̇ + (n(t) + δ)k = sAkϕ

k(0) = k0

(5)

where:

n(t) =
L̇(t)

L(t)
(6)

is the labor force growth rate, s ∈ (0,1) the constant saving

rate, δ ∈ (0,1) the constant depreciation rate, and k0 > 0
the initial capital per capita. The assumption that L(t)
is given by (2), implies that:

k(t) =

{

αϕ−1
[

α − βL0

(

1 − eαt
)]1−ϕ

e(ϕ−1)(α+δ)t×

×
[

k
1−ϕ
0 + s(1 − ϕ)Aα−ϕ(α − βL0)

ϕ−1[It − I0]
]

}
1

1−ϕ

,

(7)
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where:

It =
αe(1−ϕ)(α+δ)t

(1 − ϕ)(α + δ) 2F1





1 − ϕ, α
(1−ϕ)(α+δ)

α
(1−ϕ)(α+δ)

+ 1

�

�

�

�

�

�

βL0

β − α
eαt



 ,

and:

I0 =
α

(1 − ϕ)(α + δ) 2F1





1 − ϕ, α
(1−ϕ)(α+δ)

α
(1−ϕ)(α+δ)

+ 1

�

�

�

�

�

�

βL0

β − α



 .

Note that 2F1

�

a1, a2
a3

�

�

� z
�

is the Gauss’ Hypergeometric

Function, and its definition and detailed properties can

be found in Erdélyi (1953) and Rainville (1960). A quick

overview is presented in Boucekkine e Ruiz-Tamarit (2008).

3 The Solow model with a logistic

labor force and constant migration

Now we add to the dynamics of the labor force (3) a
constant migration rate I so that the differential equa-

tion governing the evolution of L becomes:

L̇ = L(α − βL) + I, (8)

where we still assume α > β. The solution of the above
first order differential equation is given by (Banks, 1994;

Matis e Kiffe, 2004):

L(t) =
1

2β



α + b

�

1 + ce−bt
�

�

1 − ce−bt
�



 , (9)

where:

a =
2βL0 − α

b
, b =

�

α2 + 4βI, c =
a − 1

a + 1
. (10)

By (10), we must have at least I ≥ − α2

4β , to guarantee

b ∈ R. The carrying capacity K relevant to (9) is given

by:

K = lim
t→∞

L(t) =
α + b

2β
, (11)

and we will consider L0 < K = α+b
2β . Notice that, when

I = 0, we recover the solution of the pure logistic equa-

tion (2).

If I > 0, then b > α by (10), and we have a greater
carrying capacity than the case without migration (4); if

− α2

4β ≤ I < 0, then b < α, and we verify a lower carrying

capacity than the case with no migration (b = α).

Considering (9) and the change of variable1:

z = k̄1−ϕ, (12)

1From now on, the over score indicates variables concerning the
model with migration.

we can rewrite (5) as the following linear differential
equation, now in z(t):

ż − (ϕ − 1)(δ + n̄(t))z = (1 − ϕ)sA, (13)

subject to the initial condition z(0) = z0 = k̄
1−ϕ
0 . Defi-

ning the integrating factor:

H(t) = (ϕ − 1)
� t

0
(δ + n̄(τ))dτ

= (ϕ − 1)δt + (ϕ − 1) ln

�

L(t)

L0

�

,

(14)

we have that the solution of (13) is given by:

z(t) = z0eH(t) + (1 − ϕ)sAeH(t)
� t

0
e−H(τ)dτ. (15)

4 Stability and Steady-State

Before computing an analytical expression for (15), and

therefore for k̄(t), let us discuss stability and asympto-
tes of k̄(t).

Proposition 1.

i. The capital per capita k̄(t) is globally asymptotically

stable for I ∈ [L0(βL0 − α), + ∞).
ii. The capital per capita goes to infinity at a finite time

if I ∈
�

− α2

4β ,L0(βL0 − α)
�

, that is, lim
t→t∗

k̄(t) = +∞ where

t∗ = 1
b ln

�

α−b
α+b c

�

.

Proof.

i. We will show that z(t) is globally asymptotically sta-
ble in the interval I ∈ [L0(βL0 − α), + ∞). Then, by the

continuity of the change of variable (12), we conclude
that k̄(t) is also globally asymptotically stable.

First, let us consider v(t) a solution of (13) subjected

to the arbitrary positive initial condition v(0) = v0 > 0.
This solution is given by:

v(t) = v0eH(t) + (1 − ϕ)sAeH(t)
� t

0
e−H(τ)dτ. (16)

Considering (15) and (16), we have that

|z(t)− v(t)| = |z0 − v0|e
H(t).

By (9), and for I ∈ [L0(βL0 − α), + ∞), we have that

L(t) → +∞ as t → +∞. Besides of that, because ϕ ∈
(0,1), lim

t→+∞
H(t) = −∞ by (14). Therefore:

lim
t→+∞

|z(t)− v(t)| = 0

and then, we conclude for the global asymptotic stabi-

lity of both z(t) and k̄(t). �
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ii. If I ∈
(

− α2

4β ,L0(βL0 − α)
)

, we have that L(t∗) = 0

for a finite time t∗ given by:

t∗ =
1

b
ln

(

α − b

α + b
c

)

.

It implies that lim
t→t∗

H(t) = +∞, and by (15), that limt→t∗ z(t) =

+∞. Then, t = t∗ is a vertical asymptote for both z(t)
and k̄(t). �

Proposition 2. The steady-state capital per capita is gi-

ven by k̄∞ =
(

sA
δ

) 1
1−ϕ

, if I ∈ [L0(βL0 − α), + ∞).

Proof. First, observe that we can find the horizontal

asymptote z∞ for z(t) making ż = 0 in the differen-

tial equation (13), isolating z(t), and taking its limit as
t → +∞:

z∞ = lim
t→+∞

sA

δ + n̄(t)

where n̄(t), considering (8), is given by

n̄(t) =
L̇

L
= α − βL +

I

L
(17)

what implies that

n̄∞ = lim
t→+∞

n̄(t) =
α − b

2
+ 2

βI

α + b
(18)

where we used the carrying capacity (11). Therefore, by
(12), k̄∞ can be written as:

k̄∞ =

(

sA

δ + n̄∞

) 1
1−ϕ

. (19)

For I ∈ [L0(βL0 − α), + ∞), we have that n̄∞ = 0 by
(17), and then:

k̄∞ =

(

sA

δ

) 1
1−ϕ

. �

Using (1), and the above results, we have the fol-
lowing similar results involving the output per capita

ȳ(t).

Proposition 3.

i. The output per capita ȳ(t) is globally asymptotically
stable for I ∈ [L0(βL0 − α), + ∞).
ii. The output per capita goes to infinity at a finite time

if I ∈
(

− α2

4β ,L0(βL0 − α)
)

, that is, limt→t∗ ȳ(t) = +∞

where t∗ = 1
b ln

(

α−b
α+b c

)

.

Proposition 4. The steady-state output per capita ȳ∞

is given by:

ȳ∞ = A
(

sA
δ

)

ϕ
1−ϕ

, if I ∈ [L0(βL0 − α), + ∞).

Comparing the steady-states given by propositions
2(ii) and 4(ii), with the results obtained by

Mingari Scarpello e Ritelli (2003) when I = 0, k∞ and
y∞, we conclude that:

k̄∞ = k∞ and ȳ∞ = y∞. (20)

4.1 Closed-form Solution for I > − α2

4β

In order to solve the differential equation (5), we plug

the modified population law (9) in (6), obtaining:

k̄(t) =
{

eH(t)
[

k
1−ϕ
0 + (1 − ϕ)sAI(t)

]} 1
1−ϕ

(21)

where, by (14):

H(t) = (ϕ − 1)
∫ t

0
(δ + n(τ))dτ

= (ϕ − 1)δt + ln

[

(

L(t)

L0

)ϕ−1
]

,

and:

I(t) =
∫ t

0
e−H(τ)dτ

=

(

2βL0

α + b

)ϕ−1 ∫ t

0
e(1−ϕ)δτ

(

1 − ce−bτ
)ϕ−1

×

×

(

1 −
α − b

α + b
ce−bτ

)1−ϕ

dτ.

Defining p = e−bτ , we can rewrite I(t) as:

I(t) = −
1

b

(

2βL0

α + b

)ϕ−1

×

×
∫ e−bt

1
p

(ϕ−1)δ
b −1 (1 − cp)ϕ−1

(

1 −
α − b

α + b
cp

)1−ϕ

dp,

which can be written as:

I(t) = −
1

b

(

2βL0

α + b

)ϕ−1

[Jt −J0] , (22)

where J0 and Jt can be expressed in terms of the Beta

and F1 Appell functions:

J0 =
∫ 1

0
p
(ϕ−1)δ

b
−1 (1 − cp)ϕ−1

(

1 −
α − b

α + b
cp

)1−ϕ

dp

= B

(

(ϕ− 1)δ

b
,1

)

F1

( (ϕ−1)δ
b ; 1 − ϕ, ϕ − 1

(ϕ−1)δ
b + 1

∣

∣

∣

∣

∣

c,
α − b

α + b
c

)

,

(23)

and

Jt =
∫ e−bt

0
p
(ϕ−1)δ

b
−1 (1 − cp)ϕ−1

(

1 −
α − b

α + b
cp

)1−ϕ

dp

= e(1−ϕ)δt
∫ 1

0
r
(ϕ−1)δ

b
−1

(

1 − ce−btr
)ϕ−1

(

1 −
α − b

α + b
ce−btr

)1−ϕ

dr

= e(1−ϕ)δtB

(

(ϕ − 1)δ

b
,1

)

F1

( (ϕ−1)δ
b

; 1 − ϕ, ϕ − 1
(ϕ−1)δ

b + 1

∣

∣

∣

∣

∣

ce−bt,
α − b

α + b
ce−bt

)

.

(24)
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In calculations involving Jt we carried out the second
change of variable r = ebt p. Observe that, by (22, 23,

24), from now on we must have b > 0, which means, by
(10), that the migration rate must satisfy the inequality

I > − α2

4β .

The Beta function B(a,b) is defined as Erdélyi (1953):

B(a,b) =
∫ 1

0
ua−1(1 − u)b−1du

=
Γ(a)Γ(b)

Γ(a + b)
, Re(a),Re(b) > 0,

and the F1 Appell function is defined as the double hy-

pergeometric series:

F1

(

a; a1, a2

a + b

∣

∣

∣

∣

z1, z2

)

=
∞

∑
n,k=0

(a)n+k(a1)k(a2)n

k!n!(a + b)n+k
zk

1zn
2

which have the following integral representation (Slater,

1966):

F1

(

a; a1, a2

a + b

∣

∣

∣

∣

z1, z2

)

=
1

B(a,b)

∫ 1

0
ta−1(1− z1t)−a1(1− z2t)−a2 dt, (25)

under the conditions that Re(a),Re(b) > 0 and |z1|,|z2| <
1. This function is available in the Mathematica� CAS,

a symbolic handling software we used in the simulati-
ons. Important to note that all results have been nume-

rically validated, using a standard Euler Method imple-

mentation.

Finally, the closed-form solution of the logistic Solow-

Swan model with constant migration is given by (1) and
(21− 24), where I may satisfy:

• − α2

4β < I < 0: in this case we have emigration of

labor force, situation that can occur in some speci-

fic labor market, as in the brain drain phenomena
(Pieretti e Zou, 2009);

• I = 0: here the labor force growth is given by the

pure logistic equation, and we recover the solution
obtained in Mingari Scarpello e Ritelli (2003);

• I > 0: now we have immigration of labor force,

i.e., the arriving of new workers from outside the
economy, at a constant rate.

We highlight that under intense emigration (I < 0),

the labor force (9) converge to zero at a finite time t∗,
and consequently, the economy collapses (Y(t∗) = 0),

by Proposition 1(ii) and (1). This will happen whenever

− α2

4β < I < L0(βL0 − α), and the time of collapse will

be:

t∗ =
1

b
ln

[

(α − b)

(α + b)
c

]

where a, b, and c are given by (10).

5 Simulations

In the simulations below we assume the following set

of parameters:

α = 0.2, β = 0.01, ϕ = 0.5, δ = 0.05,

s = 0.06, A = 1, k̄0 = 2, L0 = 1

which implies that I must be greater than −1 for our

solution to be valid, and I ≥ −0.19 to have an asympto-

tically increasing labor force.
In Fig. 1 we plotted the economy’s gross output for

some values of I around zero. As we can see, I > 0 (I <
0) implies a higher (minor) production than without

migration, i.e., I = 0. This behaviour is a consequence

of the impact of the constant migration term, I, in the
growth of the labor force, as shown in Fig. 2. In Fig. 3

and 4 we can see the time evolution of the capital per
capita, k̄(t), and of the output per capita, ȳ(t).

Figura 1: Gross Output versus Time

Figura 2: Labor Force versus Time
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Figura 3: Capital per capita versus Time

Figura 4: Output per capita versus Time

Note that in both cases:

• In the short term, the immigration of labor force

(I > 0) implies a minor k̄(t) and ȳ(t) than when
there is no immigration (I = 0). Over the same

period, the emigration (I < 0) implies a greater
k̄(t) and ȳ(t), when compared to I = 0;

• In the middle term, the immigration of labor force
(I > 0) implies a greater k̄(t) and ȳ(t) than when

there is no immigration (I = 0). Over the same

period, the emigration (I < 0) implies a minor
k̄(t) and ȳ(t), when compared to I = 0;

• In both cases, k̄(t) and ȳ(t) converge to the same
steady-state of the model with no migration, as

t → ∞ (see result (20)).

6 Conclusions

In this paper we derived a closed-form solution for the
Solow-Swan model in terms of Beta and Appell F1 spe-

cial functions, considering the labor force growth ru-

led by a logistic equation added by a constant migra-

tion rate, I. In this way, we extended the results ob-
tained in Mingari Scarpello e Ritelli (2003). In addition,

we proved the global asymptotic stability of k̄(t) and
ȳ(t), and showed that the output and capital per capita

steady-states are equal to the model without migration:

k̄∞ = k∞ and ȳ∞ = y∞.

We also showed that our solution is valid for I ≥
− α2

4β (where α > 0 is the intrinsic growth rate, and β > 0

is the crowding coefficient of the logistic equation), and

that it converges to the Mingari Scarpello and Ritelli’s
solution when I → 0.

Besides of that, we studied some transients for a set

of parameters, and observed that, when compared to
the case without migration I = 0, immigration of labor

force (I > 0) implies in a minor capital and production

per capita, k̄(t) and ȳ(t), in the short term and in greater
values for k̄(t) and ȳ(t) in the middle and long terms.

In both cases, k̄(t) and ȳ(t) convergence to the same
steady-state given by the model without migration as

t → ∞. For I < 0 (emigration of labor force), the inverse

behaviour has been observed.

As a direct consequence of the labor force dynamics,
we showed that the economy will collapse in finite time

if the emigration is sufficiently intense, that is, if − α2

4β <

I < L0(βL0 − α).
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