SOLUTION OF THE THREE-DIMENSIONAL ADVECTION-DIFFUSION EQUATION BY THE METHOD GIADMT FOR TWO COUNTERGRADIENT TERMS

Authors

  • Karine Rui Universidade Federal de Pelotas
  • Camila Pinto da Costa Universidade Federal de Pelotas

DOI:

https://doi.org/10.5902/2179460X19854

Keywords:

Nonlocal closure. Countergradient. GIADMT. Advection-diffusion equation.

Abstract

In this work, we present the resolution of the three-dimensional stationary advection-diffusion equation, through the GIADMT technique, considering the nonlocal closure for turbulent flow, using two different parameterization for the countergradient, one proposal by Cuijpers e Holtslag (1998) and another proposed by Roberti et al. (2004). The concentration of pollutants is estimated and compared with the observed data in Copenhagen experiment using different parameterization for the vertical turbulent diffusion coefficient.

Downloads

Download data is not yet available.

Author Biographies

Karine Rui, Universidade Federal de Pelotas

Mestranda do Programa de Pós-Graduação em Modelagem Matemática - PPGMMAT

Camila Pinto da Costa, Universidade Federal de Pelotas

Departamento de Matemática e Estatística

References

Abate, J., Valkó, P. (2004). Multi-precision laplace transform inversion. Internacional Journal for Numerical Methods in Engineering, 60, 979–993.

Arya, S. (1999). Air Pollution Meteorology and Dispersion. Oxford University Press, New York.

Burden, R. L., Faires, J. D. (2003). Análise Numérica. Thomson, São Paulo.

Costa, C. P., Vilhena, M. T., Moreira, D. M., Tirabassi, T. (2006). Semi-analytical solution of the steady threedimensional advection-diffusion equation in the planetary boundary layer. Atmospheric Environment, 40,

–5669.

Cuijpers, J. W. M., Holtslag, A. A. M. (1998). Impact of skewness and nonlocal effects on scalar and buoyancy fluxes in convective boundary layers. Journal of the Atmospheric Sciences, 55, 151–162.

Deardorff, J. W. (1966). The counter-gradient heat flux in the lower atmosphere and in the laboratory. Journal of the Atmospheric Sciences, 23, 503–506.

Deardorff, J. W. (1972). Theoretical expression for the countergradient vertical heat flux. Journal of Geophysical Research, 77, 5900–5904.

Degrazia, G. A., Rizza, U., Mangia, C., Tirabassi, T. (1997). Validation of a new turbulent parameterization for dispersion models in convective conditions. Boundary-Layer Meteorology, 85(2), 243–254.

Degrazia, G. A., Moreira, D. M., Vilhena, M. T. (2001). Derivation of an eddy diffusivity depending on source distance for vertically inhomogeneous turbulence in a convective boundary layer. Journal of Applied Meteorology, pp. 1233–1240.

Gryning, S. E., Lyck, E. (2002). The Copenhagen Tracer Experiments: Reporting of Measurements. Riso National Laboratory.

Hanna, S. (1989). Confidence limits for air quality models, as estimated by bootstrap and jackknife resampling methods. Atmospheric Environment, 23, 1385–1395.

Irwin, J. S. (1979). A theoretical variation of the wind profile power-law exponent as a function of surface roughness and stability. Atmospheric Environment, 13(1), 191–194.

Panofsky, A. H., Dutton, A. J. (1984). Atmospheric Turbulence. John Wiley & Sons, New York.

Pleim, J., Chang, J. (1992). A non-local closure model for vertical mixing in the convective boundary layer. Atmospheric Environment, 26A(6), 965–981.

Roberti, D. R., Campos Velho, H. F., Degrazia, G. A. (2004). Identifing counter-gradient term in atmospheric convective boundary layer. Inverse Problems in Science and Engineering, 12(3), 329–339.

Sorbjan, Z. (1989). Structure of the Atmospheric Boundary Layer. Prentice Hall.

Published

2016-07-20

How to Cite

Rui, K., & Costa, C. P. da. (2016). SOLUTION OF THE THREE-DIMENSIONAL ADVECTION-DIFFUSION EQUATION BY THE METHOD GIADMT FOR TWO COUNTERGRADIENT TERMS. Ciência E Natura, 38, 53–60. https://doi.org/10.5902/2179460X19854